Nitrous oxide(N_(2)O)is a long-lived greenhouse gas that mainly originates from agricultural soils.More and more studies have explored the sources,influencing factors and effective mitigation measures of N_(2)O in rec...Nitrous oxide(N_(2)O)is a long-lived greenhouse gas that mainly originates from agricultural soils.More and more studies have explored the sources,influencing factors and effective mitigation measures of N_(2)O in recent decades.However,the hierarchy of factors influencing N_(2)O emissions from agricultural soils at the global scale remains unclear.In this study,we carry out correlation and structural equation modeling analysis on a global N_(2)O emission dataset to explore the hierarchy of influencing factors affecting N_(2)O emissions from the nitrogen(N)and non-N fertilized upland farming systems,in terms of climatic factors,soil properties,and agricultural practices.Our results show that the average N_(2)O emission intensity in the N fertilized soils(17.83 g N ha^(-1)d^(-1))was significantly greater than that in the non-N fertilized soils(5.34 g N ha^(−1) d^(−1))(p<0.001).Climate factors and agricultural practices are the most important influencing factors on N_(2)O emission in non-N and N fertilized upland soils,respectively.For different climatic zones,without fertilizer,the primary influence factors on soil N_(2)O emissions are soil physical properties in subtropical monsoon zone,whereas climatic factors are key in the temperate zones.With fertilizer,the primary influence factors for subtropical monsoon and temperate continental zones are soil physical properties,while agricultural measures are the main factors in the temperate monsoon zone.Deploying enhanced agricultural practices,such as reduced N fertilizer rate combined with the addition of nitrification and urease inhibitors can potentially mitigate N_(2)O emissions by more than 60%in upland farming systems.展开更多
Lupus nephritis(LN),a severe manifestation of systemic lupus erythematosus,poses a substantial risk of progression to end-stage renal disease,with increased mortality.Conventional therapy for LN relies on broad-spectr...Lupus nephritis(LN),a severe manifestation of systemic lupus erythematosus,poses a substantial risk of progression to end-stage renal disease,with increased mortality.Conventional therapy for LN relies on broad-spectrum immunosuppressants such as glucocorticoids,mycophenolate mofetil,and calcineurin inhibitors.Although therapeutic regimens have evolved over the years,they have inherent limitations,including non-specific targeting,substantial adverse effects,high relapse rates,and prolonged maintenance and remission courses.These drawbacks underscore the need for targeted therapeutic strategies for LN.Recent advancements in our understanding of LN pathogenesis have led to the identification of novel therapeutic targets and the emergence of biological agents and small-molecule inhibitors with improved specificity and reduced toxicity.This review provides an overview of the current evidence on targeted therapies for LN,elucidates the biological mechanisms of responses and failure,highlights the challenges ahead,and outlines strategies for subsequent clinical trials and integrated immunomodulatory approaches.展开更多
China and Germany have a long history of collaborating in the Earth sciences. One example is the collaborative work in plumbing the mysteries of climate in China. German geographer Prof. Dr. Ferdinand von Richthofen l...China and Germany have a long history of collaborating in the Earth sciences. One example is the collaborative work in plumbing the mysteries of climate in China. German geographer Prof. Dr. Ferdinand von Richthofen led the first scientific expedition of the Loess Plateau and Lop Nur during the 1870s. The expedition established the theory of the eolian origin of the plateau. The term"Silk Road"("die Seidenstrasse" in German) was also coined by Prof.展开更多
portion of alpine meadows has been and will continue to be cultivated due to the concurrent increasing demands for animal-and crop-oriented foods and global warming.However, it remains unclear how these long-term chan...portion of alpine meadows has been and will continue to be cultivated due to the concurrent increasing demands for animal-and crop-oriented foods and global warming.However, it remains unclear how these long-term changes in land use will affect nitric oxide(NO) emission. At a field site with a calcareous soil on the Qinghai-Tibetan Plateau,the authors measured the year-round NO fluxes and related variables in a typically wintergrazed natural alpine meadow(NAM) and its adjacent forage oat field(FOF). The results showed that long-term plow tillage, fertilization and growing forage oats significantly yielded ca. 2.7 times more(p < 0.01) NO emissions from the FOF than the NAM(conservatively 208 vs. 56 g N/(ha·year) on average). The spring freeze–thaw period and non-growing season accounted for 17%-35% of the annual emissions, respectively. The Q10 of surface soil temperature(Ts) was 8.9 in the NAM(vs. 3.8 in the FOF), indicating increases of 24%–93% in NO emissions per 1–3 °C increase. However, the warming-induced increases could be smaller than those due to land use change and management practices. The Tsand concentrations of ammonium, nitrate and water-extractable organic carbon jointly explained 69% of the variance in daily NO fluxes from both fields during the annual period(p < 0.001). This result indicates that temporally and/or spatially distributed NO fluxes from landscapes with calcareous soils across native alpine meadows and/or fields cultivated with forage oats can be predicted by simultaneous observations of these four soil variables.展开更多
The Pan-Eurasian Experiment Modelling Platform(PEEX-MP)is one of the key blocks of the PEEX Research Programme.The PEEX MP has more than 30 models and is directed towards seamless envir-onmental prediction.The main fo...The Pan-Eurasian Experiment Modelling Platform(PEEX-MP)is one of the key blocks of the PEEX Research Programme.The PEEX MP has more than 30 models and is directed towards seamless envir-onmental prediction.The main focus area is the Arctic-boreal regions and China.The models used in PEEX-MP cover several main components of the Earth’s system,such as the atmosphere,hydrosphere,pedosphere and biosphere,and resolve the physicalchemicalbiological processes at different spatial and temporal scales and resolutions.This paper introduces and discusses PEEX MP multi-scale modelling concept for the Earth system,online integrated,forward/inverse,and socioeconomical modelling,and other approaches with a particular focus on applications in the PEEX geographical domain.The employed high-performance com-puting facilities,capabilities,and PEEX dataflow for modelling results are described.Several virtual research platforms(PEEXView,Virtual Research Environment,Web-based Atlas)for handling PEEX modelling and observational results are introduced.The over-all approach allows us to understand better physical-chemicalbiological processes,Earth’s system interactions and feedbacks and to provide valuable information for assessment studies on evaluating risks,impact,consequences,etc.for population,envir-onment and climate in the PEEX domain.This work was also one of the last projects of Prof.Sergej Zilitinkevich,who passed away on 15 February 2021.Since the finalization took time,the paper was actually submitted in 2023 and we could not argue that the final paper text was agreed with him.展开更多
基金financially supported by the National Natural Science Foundation of China (Grant No. 42161144002)the National Key Research and Development Programs of China (Grant No. 2022YFE0209200-03)+1 种基金the Suzhou Agricultural Science, Technology and Innovation Programs of Suzhou Agricultural Department (Grant No. SNG2022011)the special fund of State Environmental Protection Key Laboratory of Formation and Prevention of the Urban Air Pollution Complex (SEPAir2022080590)
文摘Nitrous oxide(N_(2)O)is a long-lived greenhouse gas that mainly originates from agricultural soils.More and more studies have explored the sources,influencing factors and effective mitigation measures of N_(2)O in recent decades.However,the hierarchy of factors influencing N_(2)O emissions from agricultural soils at the global scale remains unclear.In this study,we carry out correlation and structural equation modeling analysis on a global N_(2)O emission dataset to explore the hierarchy of influencing factors affecting N_(2)O emissions from the nitrogen(N)and non-N fertilized upland farming systems,in terms of climatic factors,soil properties,and agricultural practices.Our results show that the average N_(2)O emission intensity in the N fertilized soils(17.83 g N ha^(-1)d^(-1))was significantly greater than that in the non-N fertilized soils(5.34 g N ha^(−1) d^(−1))(p<0.001).Climate factors and agricultural practices are the most important influencing factors on N_(2)O emission in non-N and N fertilized upland soils,respectively.For different climatic zones,without fertilizer,the primary influence factors on soil N_(2)O emissions are soil physical properties in subtropical monsoon zone,whereas climatic factors are key in the temperate zones.With fertilizer,the primary influence factors for subtropical monsoon and temperate continental zones are soil physical properties,while agricultural measures are the main factors in the temperate monsoon zone.Deploying enhanced agricultural practices,such as reduced N fertilizer rate combined with the addition of nitrification and urease inhibitors can potentially mitigate N_(2)O emissions by more than 60%in upland farming systems.
基金supported by grants from the National Natural Science Foundation of China(Nos.81970599 and 82170737)Key Laboratory of National Health Commission,and Key Laboratory of Nephrology,Guangdong Province,Guangzhou,China(Nos.2002B60118 and 2020B1212060028)Guangdong Medical Science and Technology Research Fund Project of China(No.A2020085)
文摘Lupus nephritis(LN),a severe manifestation of systemic lupus erythematosus,poses a substantial risk of progression to end-stage renal disease,with increased mortality.Conventional therapy for LN relies on broad-spectrum immunosuppressants such as glucocorticoids,mycophenolate mofetil,and calcineurin inhibitors.Although therapeutic regimens have evolved over the years,they have inherent limitations,including non-specific targeting,substantial adverse effects,high relapse rates,and prolonged maintenance and remission courses.These drawbacks underscore the need for targeted therapeutic strategies for LN.Recent advancements in our understanding of LN pathogenesis have led to the identification of novel therapeutic targets and the emergence of biological agents and small-molecule inhibitors with improved specificity and reduced toxicity.This review provides an overview of the current evidence on targeted therapies for LN,elucidates the biological mechanisms of responses and failure,highlights the challenges ahead,and outlines strategies for subsequent clinical trials and integrated immunomodulatory approaches.
基金supported by the Strategic Priority Research Programme of Chinese Academy of Sciences (XDA20060102)the International Partnership Program of Chinese Academy of Sciences (134111KYSB20160031)
文摘China and Germany have a long history of collaborating in the Earth sciences. One example is the collaborative work in plumbing the mysteries of climate in China. German geographer Prof. Dr. Ferdinand von Richthofen led the first scientific expedition of the Loess Plateau and Lop Nur during the 1870s. The expedition established the theory of the eolian origin of the plateau. The term"Silk Road"("die Seidenstrasse" in German) was also coined by Prof.
基金supported by the Ministry of Science and Technology of China(2016YFA0602303)the National Natural Science Foundation of China(41375152,41603075,and 41775141)
文摘portion of alpine meadows has been and will continue to be cultivated due to the concurrent increasing demands for animal-and crop-oriented foods and global warming.However, it remains unclear how these long-term changes in land use will affect nitric oxide(NO) emission. At a field site with a calcareous soil on the Qinghai-Tibetan Plateau,the authors measured the year-round NO fluxes and related variables in a typically wintergrazed natural alpine meadow(NAM) and its adjacent forage oat field(FOF). The results showed that long-term plow tillage, fertilization and growing forage oats significantly yielded ca. 2.7 times more(p < 0.01) NO emissions from the FOF than the NAM(conservatively 208 vs. 56 g N/(ha·year) on average). The spring freeze–thaw period and non-growing season accounted for 17%-35% of the annual emissions, respectively. The Q10 of surface soil temperature(Ts) was 8.9 in the NAM(vs. 3.8 in the FOF), indicating increases of 24%–93% in NO emissions per 1–3 °C increase. However, the warming-induced increases could be smaller than those due to land use change and management practices. The Tsand concentrations of ammonium, nitrate and water-extractable organic carbon jointly explained 69% of the variance in daily NO fluxes from both fields during the annual period(p < 0.001). This result indicates that temporally and/or spatially distributed NO fluxes from landscapes with calcareous soils across native alpine meadows and/or fields cultivated with forage oats can be predicted by simultaneous observations of these four soil variables.
基金the last projects of Prof.Sergej Zilitinkevich(1936-2021)The financial support was/is provided through multiple projects related to the Pan-Eurasian EXperiment(PEEX)programme including Academy of Finland projects-ClimEco(grant#314798/799)+6 种基金ACCC(grant#337549)HEATCOST(grant#334798)European Union’s Horizon 2020 Programme projects-iCUPE under ERA-PLANET(grant#689443),INTAROS(grant#727890),EXHAUSTION(grant#820655),CRiceS(grant#101003826),RI-URBANS(grant#101036245)Horizon Europe project FOCI(grant#101056783)Erasmus+Programme projects-ECOIMPACT(grant#561975-EPP-1-2015-1-FI-EPPKA2-CBHE-JP),ClimEd(grant#619285-EPP-1-2020-1-FIEPPKA2-CBHE-JP)The Norwegian Research Council INTPART educational and networking project(322317/H30):URban Sustainability in Action:Multi-disciplinary Approach through Jointly Organized Research schoolsand the EEA project(Contract No.2020TO01000219):Turbulent-resolving urban modelling of air quality and thermal comfort(TURBAN).
文摘The Pan-Eurasian Experiment Modelling Platform(PEEX-MP)is one of the key blocks of the PEEX Research Programme.The PEEX MP has more than 30 models and is directed towards seamless envir-onmental prediction.The main focus area is the Arctic-boreal regions and China.The models used in PEEX-MP cover several main components of the Earth’s system,such as the atmosphere,hydrosphere,pedosphere and biosphere,and resolve the physicalchemicalbiological processes at different spatial and temporal scales and resolutions.This paper introduces and discusses PEEX MP multi-scale modelling concept for the Earth system,online integrated,forward/inverse,and socioeconomical modelling,and other approaches with a particular focus on applications in the PEEX geographical domain.The employed high-performance com-puting facilities,capabilities,and PEEX dataflow for modelling results are described.Several virtual research platforms(PEEXView,Virtual Research Environment,Web-based Atlas)for handling PEEX modelling and observational results are introduced.The over-all approach allows us to understand better physical-chemicalbiological processes,Earth’s system interactions and feedbacks and to provide valuable information for assessment studies on evaluating risks,impact,consequences,etc.for population,envir-onment and climate in the PEEX domain.This work was also one of the last projects of Prof.Sergej Zilitinkevich,who passed away on 15 February 2021.Since the finalization took time,the paper was actually submitted in 2023 and we could not argue that the final paper text was agreed with him.