期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
The present and future of the magnesium alloy researches 被引量:10
1
作者 y.y.li 《China Foundry》 SCIE CAS 2004年第S1期1-6,共6页
This paper gave a brief discussion on the characteristics of Mg alloys and gave a brief review in the Mg alloys researches, with emphasis on the research progress and fabrication technology. Several vital directions f... This paper gave a brief discussion on the characteristics of Mg alloys and gave a brief review in the Mg alloys researches, with emphasis on the research progress and fabrication technology. Several vital directions for the future development were pointed out. 展开更多
关键词 magnesium alloys materials processing light alloys
下载PDF
NUMERICAL SIMULATION OF EXTRUSION OF COMPOSITE POWDERS PREPARED BY HIGH ENERGY MILLING 被引量:2
2
作者 X.Q.Li W.P.Chen +3 位作者 W.Xia Q.L.Zhu y.y.li E.D.Wang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2004年第1期51-54,共4页
Based on the characteristic of high energy milling and the micromechanics of composite material, a plastic constitutive equation is implemented for milled composite powders. To check the equation, the extrusion of Ti/... Based on the characteristic of high energy milling and the micromechanics of composite material, a plastic constitutive equation is implemented for milled composite powders. To check the equation, the extrusion of Ti/Al composite powders prepared by high energy milling was simulated. It was from the numerical analysis that the predicted extrusion pressure mounted up with milling time and extrusion ratio increasing, which was perfect agreement with experimental results. 展开更多
关键词 high energy milling composite powder plastic constitutive equation EXTRUSION numerical simulation
下载PDF
MICROSTRVCTURE SIMULATION AND PROCESS OPTIMIZATION OF TURBINE BLADE CASTINGS 被引量:2
3
作者 D.Z.Li Z.Y.Hu +1 位作者 Q.Li y.y.li 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1998年第5期383-390,共8页
The probabilistic modeling is applied to calculate microstructural features of the thin complex smprolloy turbine blades cast by the vacuum investment process. The random distribution, orientation and physical mechani... The probabilistic modeling is applied to calculate microstructural features of the thin complex smprolloy turbine blades cast by the vacuum investment process. The random distribution, orientation and physical mechanism of the nucleation, the growth kinetics of dendrites and the columnar-to-equiaxed transition (CET) are considered.Capitalizing on these simulating schemes, the comprehensive influence of key process variables on the scale and uniformity of grains has been involved quantitatively. The validity of the modeling is confirmed by selection of the optimum process variables. 展开更多
关键词 Probabilistic modeling MICROSTRUCTURE process optimization
下载PDF
STCF conceptual design report (Volume 1): Physics & detector 被引量:2
4
作者 M.Achasov X.C.Ai +457 位作者 L.P.An R.Aliberti Q.An X.Z.Bai Y.Bai O.Bakina A.Barnyakov V.Blinov V.Bobrovnikov D.Bodrov A.Bogomyagkov A.Bondar I.Boyko Z.H.Bu F.M.Cai H.Cai J.J.Cao Q.H.Cao X.Cao Z.Cao Q.Chang K.T.Chao D.Y.Chen H.Chen H.X.Chen J.F.Chen K.Chen L.L.Chen P.Chen S.L.Chen S.M.Chen S.Chen S.P.Chen W.Chen X.Chen X.F.Chen X.R.Chen Y.Chen Y.Q.Chen H.Y.Cheng J.Cheng S.Cheng T.G.Cheng J.P.Dai L.Y.Dai X.C.Dai D.Dedovich A.Denig I.Denisenko J.M.Dias D.Z.Ding L.Y.Dong W.H.Dong V.Druzhinin D.S.Du Y.J.Du Z.G.Du L.M.Duan D.Epifanov Y.L.Fan S.S.Fang Z.J.Fang G.Fedotovich C.Q.Feng X.Feng Y.T.Feng J.L.Fu J.Gao Y.N.Gao P.S.Ge C.Q.Geng L.S.Geng A.Gilman L.Gong T.Gong B.Gou W.Gradl J.L.Gu A.Guevara L.C.Gui A.Q.Guo F.K.Guo J.C.Guo J.Guo Y.P.Guo Z.H.Guo A.Guskov K.L.Han L.Han M.Han X.Q.Hao J.B.He S.Q.He X.G.He Y.L.He Z.B.He Z.X.Heng B.L.Hou T.J.Hou Y.R.Hou C.Y.Hu H.M.Hu K.Hu R.J.Hu W.H.Hu X.H.Hu Y.C.Hu J.Hua G.S.Huang J.S.Huang M.Huang Q.Y.Huang W.Q.Huang X.T.Huang X.J.Huang Y.B.Huang Y.S.Huang N.Hüsken V.Ivanov Q.P.Ji J.J.Jia S.Jia Z.K.Jia H.B.Jiang J.Jiang S.Z.Jiang J.B.Jiao Z.Jiao H.J.Jing X.L.Kang X.S.Kang B.C.Ke M.Kenzie A.Khoukaz I.Koop E.Kravchenko A.Kuzmin Y.Lei E.Levichev C.H.Li C.Li D.Y.Li F.Li G.Li G.Li H.B.Li H.Li H.N.Li H.J.Li H.L.Li J.M.Li J.Li L.Li L.Li L.Y.Li N.Li P.R.Li R.H.Li S.Li T.Li W.J.Li X.Li X.H.Li X.Q.Li X.H.Li Y.Li y.y.li Z.J.Li H.Liang J.H.Liang Y.T.Liang G.R.Liao L.Z.Liao Y.Liao C.X.Lin D.X.Lin X.S.Lin B.J.Liu C.W.Liu D.Liu F.Liu G.M.Liu H.B.Liu J.Liu J.J.Liu J.B.Liu K.Liu K.Y.Liu K.Liu L.Liu Q.Liu S.B.Liu T.Liu X.Liu Y.W.Liu Y.Liu Y.L.Liu Z.Q.Liu Z.Y.Liu Z.W.Liu I.Logashenko Y.Long C.G.Lu J.X.Lu N.Lu Q.F.Lü Y.Lu Y.Lu Z.Lu P.Lukin F.J.Luo T.Luo X.F.Luo Y.H.Luo H.J.Lyu X.R.Lyu J.P.Ma P.Ma Y.Ma Y.M.Ma F.Maas S.Malde D.Matvienko Z.X.Meng R.Mitchell A.Nefediev Y.Nefedov S.L.Olsen Q.Ouyang P.Pakhlov G.Pakhlova X.Pan Y.Pan E.Passemar Y.P.Pei H.P.Peng L.Peng X.Y.Peng X.J.Peng K.Peters S.Pivovarov E.Pyata B.B.Qi Y.Q.Qi W.B.Qian Y.Qian C.F.Qiao J.J.Qin J.J.Qin L.Q.Qin X.S.Qin T.L.Qiu J.Rademacker C.F.Redmer H.Y.Sang M.Saur W.Shan X.Y.Shan L.L.Shang M.Shao L.Shekhtman C.P.Shen J.M.Shen Z.T.Shen H.C.Shi X.D.Shi B.Shwartz A.Sokolov J.J.Song W.M.Song Y.Song Y.X.Song A.Sukharev J.F.Sun L.Sun X.M.Sun Y.J.Sun Z.P.Sun J.Tang S.S.Tang Z.B.Tang C.H.Tian J.S.Tian Y.Tian Y.Tikhonov K.Todyshev T.Uglov V.Vorobyev B.D.Wan B.L.Wang B.Wang D.Y.Wang G.Y.Wang G.L.Wang H.L.Wang J.Wang J.H.Wang J.C.Wang M.L.Wang R.Wang R.Wang S.B.Wang W.Wang W.P.Wang X.C.Wang X.D.Wang X.L.Wang X.L.Wang X.P.Wang X.F.Wang Y.D.Wang Y.P.Wang Y.Q.Wang Y.L.Wang Y.G.Wang Z.Y.Wang Z.Y.Wang Z.L.Wang Z.G.Wang D.H.Wei X.L.Wei X.M.Wei Q.G.Wen X.J.Wen G.Wilkinson B.Wu J.J.Wu L.Wu P.Wu T.W.Wu Y.S.Wu L.Xia T.Xiang C.W.Xiao D.Xiao M.Xiao K.P.Xie Y.H.Xie Y.Xing Z.Z.Xing X.N.Xiong F.R.Xu J.Xu L.L.Xu Q.N.Xu X.C.Xu X.P.Xu Y.C.Xu Y.P.Xu Y.Xu Z.Z.Xu D.W.Xuan F.F.Xue L.Yan M.J.Yan W.B.Yan W.C.Yan X.S.Yan B.F.Yang C.Yang H.J.Yang H.R.Yang H.T.Yang J.F.Yang S.L.Yang Y.D.Yang Y.H.Yang Y.S.Yang Y.L.Yang Z.W.Yang Z.Y.Yang D.L.Yao H.Yin X.H.Yin N.Yokozaki S.Y.You Z.Y.You C.X.Yu F.S.Yu G.L.Yu H.L.Yu J.S.Yu J.Q.Yu L.Yuan X.B.Yuan Z.Y.Yuan Y.F.Yue M.Zeng S.Zeng A.L.Zhang B.W.Zhang G.Y.Zhang G.Q.Zhang H.J.Zhang H.B.Zhang J.Y.Zhang J.L.Zhang J.Zhang L.Zhang L.M.Zhang Q.A.Zhang R.Zhang S.L.Zhang T.Zhang X.Zhang Y.Zhang Y.J.Zhang Y.X.Zhang Y.T.Zhang Y.F.Zhang Y.C.Zhang Y.Zhang Y.Zhang Y.M.Zhang Y.L.Zhang Z.H.Zhang Z.Y.Zhang Z.Y.Zhang H.Y.Zhao J.Zhao L.Zhao M.G.Zhao Q.Zhao R.G.Zhao R.P.Zhao Y.X.Zhao Z.G.Zhao Z.X.Zhao A.Zhemchugov B.Zheng L.Zheng Q.B.Zheng R.Zheng Y.H.Zheng X.H.Zhong H.J.Zhou H.Q.Zhou H.Zhou S.H.Zhou X.Zhou X.K.Zhou X.P.Zhou X.R.Zhou Y.L.Zhou Y.Zhou Y.X.Zhou Z.Y.Zhou J.Y.Zhu K.Zhu R.D.Zhu R.L.Zhu S.H.Zhu Y.C.Zhu Z.A.Zhu V.Zhukova V.Zhulanov B.S.Zou Y.B.Zuo 《Frontiers of physics》 SCIE CSCD 2024年第1期1-154,共154页
The superτ-charm facility(STCF)is an electron–positron collider proposed by the Chinese particle physics community.It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of... The superτ-charm facility(STCF)is an electron–positron collider proposed by the Chinese particle physics community.It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of 0.5×10^(35) cm^(–2)·s^(–1) or higher.The STCF will produce a data sample about a factor of 100 larger than that of the presentτ-charm factory—the BEPCII,providing a unique platform for exploring the asymmetry of matter-antimatter(charge-parity violation),in-depth studies of the internal structure of hadrons and the nature of non-perturbative strong interactions,as well as searching for exotic hadrons and physics beyond the Standard Model.The STCF project in China is under development with an extensive R&D program.This document presents the physics opportunities at the STCF,describes conceptual designs of the STCF detector system,and discusses future plans for detector R&D and physics case studies. 展开更多
关键词 electron–positron collider tau-charm region high luminosity STCF detector conceptual design
原文传递
Simultaneous enhancement of mechanical and shape memory properties by heat-treatment homogenization of Ti_(2)Ni precipitates in TiNi shape memory alloy fabricated by selective laser melting 被引量:14
5
作者 H.Z.Lu L.H.Liu +8 位作者 C.Yang X.Luo C.H.Song Z.Wang J.Wang Y.D.Su Y.F.Ding L.C.Zhang y.y.li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第6期205-216,共12页
The excellent shape memory and mechanical properties of Ti Ni shape memory alloys(SMAs) fabricated using selective laser melting(SLM) are highly desirable for a wide range of critical applications. In this study, we e... The excellent shape memory and mechanical properties of Ti Ni shape memory alloys(SMAs) fabricated using selective laser melting(SLM) are highly desirable for a wide range of critical applications. In this study, we examined the simultaneous enhancement of mechanical and shape memory properties using heat-treatment homogenization of Ti_(2)Ni precipitates in a Ti_(50.6)Ni_(49.4)SMA fabricated using SLM. Specifically, because of the complete solution treatment, nanoscale spherical Ti_(2)Ni precipitates were homogeneously dispersed throughout the grain interior. Interestingly, the resultant SMA exhibited an ultrahigh tensile strength of 880 ± 13 MPa, a large elongation of 22.4 ± 0.4%, and an excellent shape memory effect, with a recovery rate of > 98% and ultrahigh recoverable strain of 5.32% after ten loading–unloading cycles. These simultaneously enhanced properties are considerably superior than those of most previously reported Ti Ni SMAs fabricated using additive manufacturing. Fundamentally, the enhancement in tensile strength is ascribed to precipitation strengthening and work hardening, and the large plasticity is mainly attributed to the homogeneous nanoscale globular Ti_(2)Ni precipitates, which effectively impeded the rapid propagation of microcracks. Furthermore, the enhanced shape memory properties are derived from the suppression of dislocation movement and formation of retained stabilized martensite by the presence of high-density dislocations, nanoscale Ti_(2)Ni precipitates, and abundant interfaces. The obtained results provide insight into the enhancement of the two types of properties in Ti Ni SMAs and will accelerate the wider application of SMAs. 展开更多
关键词 Shape memory alloy Selective laser melting Heat treatment Mechanical properties Shape memory properties
原文传递
Overcoming the strength-ductility trade-off by tailoring grain-boundary metastable Si-containing phase in β-type titanium alloy 被引量:12
6
作者 X.Luo L.H.Liu +6 位作者 C.Yang H.Z Lu H.W.Ma Z.Wang D.D.Li L.C.Zhang y.y.li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第9期112-123,共12页
It is well accepted that grain-boundary phases in metallic alloys greatly deteriorate the mechanical properties.In our work,we report on a novel strategy to prepare high strength-ductility β-type(Ti69.71 Nb23.72Zr4.8... It is well accepted that grain-boundary phases in metallic alloys greatly deteriorate the mechanical properties.In our work,we report on a novel strategy to prepare high strength-ductility β-type(Ti69.71 Nb23.72Zr4.83Ta1.74)97Si3(at.%)(TNZTS) alloys by tailoring grain-boundary metastable Si-containing phase.Specifically,the thin shell-shaped metastable S1 phase surrounding the columnar β-Ti grain was intercepted successfully via nonequilibrium rapid solidification achieved by selective laser melting(SLM).Subsequently,the thin shell-shaped metastable(Ti,Nb,Zr)5 Si3(called S1) phase was transformed into globular(Ti,Nb,Zr)2 Si(called S2) phase by the solution heat treatment.Interestingly,the globular S2 phases reinforced TNZTS alloy exhibits ultrahigh yield strength of 978 MPa,ultimate strength of 1010 MPa and large elongation of 10.4 %,overcoming the strength-ductility trade-off of TNZTS alloys by various methods.Especially,the reported yield strength herein is 55 % higher than that of conventionally forged TNZT alloys.Dynamic analysis indicates the globularization process of the metastable S1 phase is controlled by the model of termination migration.The quantitative analysis on strengthening mechanism demonstrates that the increase in yield strength of the heat-treated alloys is mainly ascribed to the strengthening of the precipitated silicide and the dislocations induced by high cooling rate.The obtained results provide some basis guidelines for designing and fabricating β-titanium alloys with excellent mechanical properties,and pave the way for biomedical application of TNZTS alloy by SLM. 展开更多
关键词 Selective laser melting βtitanium alloys Heat treatment
原文传递
Corrosion behavior of 13Cr stainless steel under stress and crevice in high pressure CO_(2)/O_(2)environment 被引量:2
7
作者 G.Y.Zhu y.y.li +2 位作者 B.S.Hou Q.H.Zhang G.A.Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第29期79-89,共11页
In this work,through the self-developed setup for in situ electrochemical tests,the corrosion behavior of 13 Cr stainless steel under the combined effect of stress and crevice in high pressure CO_(2)/O_(2)environment ... In this work,through the self-developed setup for in situ electrochemical tests,the corrosion behavior of 13 Cr stainless steel under the combined effect of stress and crevice in high pressure CO_(2)/O_(2)environment was investigated.The results show that 13 Cr stainless steel presents a self-passivation state.Under the action of stress,the anodic dissolution process of steel inside crevice is expedited.There is a galvanic effect between the stressed steel inside crevice and the unstressed steel outside crevice.The applied stress reduces the induction stage of crevice corrosion and induces a larger galvanic current,i.e.,the applied stress promotes the development of crevice corrosion.Meanwhile,adding 0.1 MPa O_(2)is conducive to forming a more stable passive film but causes a greater galvanic effect. 展开更多
关键词 Stainless steel Crevice corrosion Stress corrosion Galvanic effect
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部