期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Geochemistry and origin of gas pools in the Gaoqing-Pingnan fault zone, Jiyang Depression 被引量:1
1
作者 SHEN Baojian HUANG Zhilong +3 位作者 LIU Hongwen XU Cheng yan zaifei CHEN Mi 《Chinese Journal Of Geochemistry》 EI CAS 2007年第4期446-454,共9页
In the surroundings of the Gaoqing-Pingnan fault zone are developed quite a number of gas reservoirs. Based on gas compositions, they can be divided into two groups, i.e., CO2 and CH4. Their composition and isotope ge... In the surroundings of the Gaoqing-Pingnan fault zone are developed quite a number of gas reservoirs. Based on gas compositions, they can be divided into two groups, i.e., CO2 and CH4. Their composition and isotope geochemistry were dealt with in this study. The CO2 contents range from 60.72%–99.99%, the δ13CCO2 values from -3.41‰– -9.8‰, and the 3He/4He ratios from 4.35×10-6–6.35×10-6 (i.e. R/Ra=4.45–4.35). Based on the data on composition and isotope geochemistry, deep geological background, deep faults and volcanic rocks, it is shown that CO2 ,distributed in the Gaoqing area, mostly originated from mantle-source inorganic matter which is associated with magmatic rocks. The favorable tectonic environment for the formation of CO2 reservoirs is the rift, which is related to great fault-magmatic activity, the formation of CO2 gas pools and their space-time correlation to the most recent magmatic activities. Hydrocarbon gas pools occur in the Huagou area. The CH4 contents are within the range of 88.83%–99.12%, and the δ13CCH4 values, -44.7‰– -54.39‰. This indicates that the hydrocarbon gas resulted from the decomposition of oil-type gas at high temperatures. Volcanic rocks in the CO2 gas pool-and CH4 gas pool-distributed areas show significant differences in Fe2O3 and FeO contents. This has proven that the hydrocarbon gas may have resulted from various chemical reactions. Magmatic activities are the primary reason for the distribution of CO2 and CH4 gas pools in the Gaoqing-Pingnan fault zone. 展开更多
关键词 气藏 地球化学 岩浆熔蚀 洼地
下载PDF
Isotopic Compositions of Sulfur in the Jinshachang Lead–Zinc Deposit, Yunnan, China, and its Implication on the Formation of Sulfur-Bearing Minerals 被引量:9
2
作者 BAI Junhao HUANG Zhilong +2 位作者 ZHU Dan yan zaifei ZHOU Jiaxi 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2013年第5期1355-1369,共15页
The Jinshachang lead-zinc deposit is mainly hosted in the Upper Neoproterozoic carbonate rocks of the Dengying Group and located in the Sichuan-Yunnan-Guizhou (SYG) Pb-Zn-Ag multi- metal mineralization area in China... The Jinshachang lead-zinc deposit is mainly hosted in the Upper Neoproterozoic carbonate rocks of the Dengying Group and located in the Sichuan-Yunnan-Guizhou (SYG) Pb-Zn-Ag multi- metal mineralization area in China. Sulfides minerals including sphalerite, galena and pyrite postdate or coprecipitate with gangue mainly consisting of fluorite, quartz, and barite, making this deposit distinct from most lead-zinc deposits in the SYG. This deposit is controlled by tectonic structures, and most mineralization is located along or near faults zones. Emeishan basalts near the ore district might have contributed to the formation of orebodies. The j34S values of sphalerite, galena, pyrite and barite were estimated to be 3.6‰-13.4‰, 3.7‰-9.0‰, -6.4‰ to 29.2‰ and 32.1‰34.7‰, respectively. In view of the similar δ34S values of barite and sulfates being from the Cambrian strata, the sulfur of barite was likely derived from the Cambrian strata. The homogenization temperatures (T ≈ 134--383℃) of fluid inclusions were not suitable for reducing bacteria, therefore, the bacterial sulfate reduction could not have been an efficient path to generate reduced sulfur in this district. Although thermochemical sulfate reduction process had contributed to the production of reduced sulfur, it was not the main mechanism. Considering other aspects, it can be suggested that sulfur of sulfides should have been derived from magmatic activities. The δ34S values of sphalerite were found to be higher than those of coexisting galena. The equilibrium temperatures calculated by using the sulfur isotopic composition of mineral pairs matched well with the homogenization temperature of fluid inclusions, suggesting that the sulfur isotopic composition in ore-forming fluids had reached a partial equilibrium. 展开更多
关键词 sulfur isotopic composition thermochemical sulfate reduction homogenization temperature equilibrium temperature Jinshachang lead-zinc deposit
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部