The impacts of future climate change on streamflow of the Dongliao River Watershed located in Jilin Prov-ince, China have been evaluated quantitatively by using a general circulation model (HadCM3) coupled with the ...The impacts of future climate change on streamflow of the Dongliao River Watershed located in Jilin Prov-ince, China have been evaluated quantitatively by using a general circulation model (HadCM3) coupled with the Soil and Water Assessment Tool (SWAT) hydrological model. The model was calibrated and validated against the historical monitored data from 2005 to 2009. The streamflow was estimated by downscaling HadCM3 outputs to the daily mean temperature and precipitation series, derived for three 30-year time slices, 2020s, 2050s and 2080s. Results suggest that daily mean temperature increases with a changing rate of 0.435~C per decade, and precipitation decreases with a changing rate of 0.761 mm per decade. Compared with other seasons, the precipitation in summer shows significant downward trend, while a significant upward trend in autumn. The annual streamflow demonstrates a general down-ward trend with a decreasing rate of 0.405 m^3/s per decade. The streamflow shows significant downward and upward trends in summer and in autumn, respectively. The decreasing rate of streamflow in summer reaches 1.97 m^3/s per decade, which contributes primarily to the decrease of streamflow. The results of this work would be of great benifit to the design of economic and social development planning in the study area.展开更多
基金Under the auspices of Major Science and Technology Program for Water Pollution Control and Treatment(No.2009ZX07526-006-04-01)
文摘The impacts of future climate change on streamflow of the Dongliao River Watershed located in Jilin Prov-ince, China have been evaluated quantitatively by using a general circulation model (HadCM3) coupled with the Soil and Water Assessment Tool (SWAT) hydrological model. The model was calibrated and validated against the historical monitored data from 2005 to 2009. The streamflow was estimated by downscaling HadCM3 outputs to the daily mean temperature and precipitation series, derived for three 30-year time slices, 2020s, 2050s and 2080s. Results suggest that daily mean temperature increases with a changing rate of 0.435~C per decade, and precipitation decreases with a changing rate of 0.761 mm per decade. Compared with other seasons, the precipitation in summer shows significant downward trend, while a significant upward trend in autumn. The annual streamflow demonstrates a general down-ward trend with a decreasing rate of 0.405 m^3/s per decade. The streamflow shows significant downward and upward trends in summer and in autumn, respectively. The decreasing rate of streamflow in summer reaches 1.97 m^3/s per decade, which contributes primarily to the decrease of streamflow. The results of this work would be of great benifit to the design of economic and social development planning in the study area.