Long-term research on key techniques of clean utilization of potassic rocks from over twenty localities has been performed to settle the shortage of soluble potassium resources in China. The results show that K-feldsp...Long-term research on key techniques of clean utilization of potassic rocks from over twenty localities has been performed to settle the shortage of soluble potassium resources in China. The results show that K-feldspar as the principal mineral enriched in potassium could be decomposed in the media of Ca(OH)_2, NaOH, KOH-H_2O solution via hydrothermal treatment, into tobermorite, hydroxylcancrinite, and kalsilite respectively. By further processing, these compounds are feasible for being as slow-release carrier of potassium nitrate, extracting alumina, and preparing farm-oriented fertilizers of potassium sulphate and nitrate. Correspondingly, the filtrate is KOH,(Na, K)_2SiO_3, and K_2SiO_3 solution, from which potassium carbonate, sulphate, nitrate, and phosphate could be easily fabricated. As NaO H and KOH are recycled in the processing chains by causticizing sodium and/or potassium metasilicate solutions, the hydrothermal alkaline techniques as developed in this research have several advantages as lower consumption of disposable mineral resources and energy, maximized utilization of potassic mineral resources, as well as clean productions etc. Based on the approaches presented in this paper, the technical system of efficiently utilizing insoluble potassium resources has been established. The hydrothermal alkaline methods are feasible to be industrialized on a large scale, thus resulting in decreasing imports of potash fertilizers, improving the pattern of potassium fertilizer consumption, and enhancing the supplying guarantee of potassium resource in China.展开更多
Compositions, proportions, and equilibrium temperature of coexisting two-feldspar in crystalline rocks are of great importance to classification in petrography and interpretation of petrogenesis. Crystalline rocks are...Compositions, proportions, and equilibrium temperature of coexisting two-feldspar in crystalline rocks are of great importance to classification in petrography and interpretation of petrogenesis. Crystalline rocks are usually composed of 4-6 minerals (phases), depending on their independent chemical components and the equilibrium temperature of crystallizations. In general, number of mineral phases can be determined by the "Phase Rule". According to the mass balance principle, bulk composition of coexisting two-feldspar could be evaluated from the bulk chemistry of a rock, provided that the compositions of the coexisting mafic mineral phases containing calcium, sodium, and potassium oxides are determined, e.g., by microprobe analysis. The compositions, proportions, and temperature of two-feldspar in equilibrium can thus be simultaneously resolved numerically from bulk composition of the rock, by incorporating the activity/composition relations of the ternary feldspars with the mass balance constraints. Upon the numerical approximation method presented in this paper, better-quality, internally consistent data on feldspar group could usually be obtained, which would be expected more realistic and accurate in consideration of thermodynamic equilibria in the system of crystalline rocks, as well as bulk chemistry of a rock and the composing minerals.展开更多
基金granted by China Geological Survey Project(12120113087700)Fundamental Research Funds for the Central Universities(2652014017)+10 种基金the National Eleventh Five-year Supporting Plan for Science and Technology(2006BAD10B04)Specialized Research Funds for Doctoral Program of Higher Education(1999049114)supported by the Provincial Science and Technology Programs of Henan(0524250042)Inner Mongolia(20020307)Shanxi(001065)Beijing(953500400)enterprises of Shaanxi Daqin Potassium Industry CorporationTongling Chemical Industry Group CorporationShanxi Ziguang Potassium Industry CorporationHenan Qianhe Mining Corporationthe Geological Survey of Tianjin
文摘Long-term research on key techniques of clean utilization of potassic rocks from over twenty localities has been performed to settle the shortage of soluble potassium resources in China. The results show that K-feldspar as the principal mineral enriched in potassium could be decomposed in the media of Ca(OH)_2, NaOH, KOH-H_2O solution via hydrothermal treatment, into tobermorite, hydroxylcancrinite, and kalsilite respectively. By further processing, these compounds are feasible for being as slow-release carrier of potassium nitrate, extracting alumina, and preparing farm-oriented fertilizers of potassium sulphate and nitrate. Correspondingly, the filtrate is KOH,(Na, K)_2SiO_3, and K_2SiO_3 solution, from which potassium carbonate, sulphate, nitrate, and phosphate could be easily fabricated. As NaO H and KOH are recycled in the processing chains by causticizing sodium and/or potassium metasilicate solutions, the hydrothermal alkaline techniques as developed in this research have several advantages as lower consumption of disposable mineral resources and energy, maximized utilization of potassic mineral resources, as well as clean productions etc. Based on the approaches presented in this paper, the technical system of efficiently utilizing insoluble potassium resources has been established. The hydrothermal alkaline methods are feasible to be industrialized on a large scale, thus resulting in decreasing imports of potash fertilizers, improving the pattern of potassium fertilizer consumption, and enhancing the supplying guarantee of potassium resource in China.
基金granted by the National Eleventh Five-year Supporting Plan for Science and Technology (2006BAD10B04)China Geological Survey Project (12120113087700)
文摘Compositions, proportions, and equilibrium temperature of coexisting two-feldspar in crystalline rocks are of great importance to classification in petrography and interpretation of petrogenesis. Crystalline rocks are usually composed of 4-6 minerals (phases), depending on their independent chemical components and the equilibrium temperature of crystallizations. In general, number of mineral phases can be determined by the "Phase Rule". According to the mass balance principle, bulk composition of coexisting two-feldspar could be evaluated from the bulk chemistry of a rock, provided that the compositions of the coexisting mafic mineral phases containing calcium, sodium, and potassium oxides are determined, e.g., by microprobe analysis. The compositions, proportions, and temperature of two-feldspar in equilibrium can thus be simultaneously resolved numerically from bulk composition of the rock, by incorporating the activity/composition relations of the ternary feldspars with the mass balance constraints. Upon the numerical approximation method presented in this paper, better-quality, internally consistent data on feldspar group could usually be obtained, which would be expected more realistic and accurate in consideration of thermodynamic equilibria in the system of crystalline rocks, as well as bulk chemistry of a rock and the composing minerals.