The epoxy resin (E-51) was used as polymer matrix,conductive carbon black (CB) as conductive filler,and PZT was used to prepare a composite by curing.The effects of PZT and CB content on the properties of PZT/ CB/ EP ...The epoxy resin (E-51) was used as polymer matrix,conductive carbon black (CB) as conductive filler,and PZT was used to prepare a composite by curing.The effects of PZT and CB content on the properties of PZT/ CB/ EP piezoelectric composite were studied.When the PZT content reaches 40 wt%,the optimized vibration attenuation properties of PZT/CB/EP materials could be achieved with a loss factor of 0.9 from room temperature to 60 ℃.With the increase of PZT content,the bending strength of PZT/CB/EP piezoelectric composite vibration reduction material firstly increased from 45 MPa to 65 MPa and then decreased to 38 MPa.At room temperature,the dielectric constant increased from 7 to 50,and the dielectric loss increased from 0.1 to 0.5.展开更多
The fundamental characteristics of varied initial core-sizes of Ba Ti O3(BT) and its influential role on the morphology and dielectric properties of Ba Ti O3@0.6 Ba Ti O3-0.4 Bi Al O3(BT@0.6 BT-0.4 BA) ceramic sam...The fundamental characteristics of varied initial core-sizes of Ba Ti O3(BT) and its influential role on the morphology and dielectric properties of Ba Ti O3@0.6 Ba Ti O3-0.4 Bi Al O3(BT@0.6 BT-0.4 BA) ceramic samples were studied. Alkoxide sol-precipitation method was adopted as revised chemical route to synthesize the constituent "core" BT powders in a dispersed phase, whereas the distinctive initial nano-sized particles were affected by the pre-calcination temperatures(600-900 ℃).The microstructure of the uncoated BT ceramics revealed an exaggerated grain growth with an optimized dielectric constant(ε(max) 〉9 000) whilst the coated ceramics behaved otherwise(grain growth inhibited) when sintered at an elevated temperature. Regardless of the previously studied solubility limit(about 0.1%) of BT-BA samples, BT@0.6 BT-0.4 BA maintained a maximum dielectric constant(ε(max)) ranging from 1 592 to 1 708 and tan δ less than 2% under a unit mole ratio at room temperature. In view of all these analyses, the initial nanometer sizes of the as-prepared BT-core powders combined with the increase effect of cation substitutions of Bi^(3+) and Al^(3+) in the shell content, induced the diffuse transition phase of BT@0.6 BT-0.4 BA composition.展开更多
基金Funded by State Key Laboratory of Power Grid Environmental Protection(No.GYW51201801173)。
文摘The epoxy resin (E-51) was used as polymer matrix,conductive carbon black (CB) as conductive filler,and PZT was used to prepare a composite by curing.The effects of PZT and CB content on the properties of PZT/ CB/ EP piezoelectric composite were studied.When the PZT content reaches 40 wt%,the optimized vibration attenuation properties of PZT/CB/EP materials could be achieved with a loss factor of 0.9 from room temperature to 60 ℃.With the increase of PZT content,the bending strength of PZT/CB/EP piezoelectric composite vibration reduction material firstly increased from 45 MPa to 65 MPa and then decreased to 38 MPa.At room temperature,the dielectric constant increased from 7 to 50,and the dielectric loss increased from 0.1 to 0.5.
基金Funded by NSFC-Guangdong Joint Funds of the Natural Science Foundation of China(No.U1601209)the National Key Basic Research Program of China(973 Program)(No.2015CB654601)National Natural Science Foundation of China(No.51372191)
文摘The fundamental characteristics of varied initial core-sizes of Ba Ti O3(BT) and its influential role on the morphology and dielectric properties of Ba Ti O3@0.6 Ba Ti O3-0.4 Bi Al O3(BT@0.6 BT-0.4 BA) ceramic samples were studied. Alkoxide sol-precipitation method was adopted as revised chemical route to synthesize the constituent "core" BT powders in a dispersed phase, whereas the distinctive initial nano-sized particles were affected by the pre-calcination temperatures(600-900 ℃).The microstructure of the uncoated BT ceramics revealed an exaggerated grain growth with an optimized dielectric constant(ε(max) 〉9 000) whilst the coated ceramics behaved otherwise(grain growth inhibited) when sintered at an elevated temperature. Regardless of the previously studied solubility limit(about 0.1%) of BT-BA samples, BT@0.6 BT-0.4 BA maintained a maximum dielectric constant(ε(max)) ranging from 1 592 to 1 708 and tan δ less than 2% under a unit mole ratio at room temperature. In view of all these analyses, the initial nanometer sizes of the as-prepared BT-core powders combined with the increase effect of cation substitutions of Bi^(3+) and Al^(3+) in the shell content, induced the diffuse transition phase of BT@0.6 BT-0.4 BA composition.