Soluble sugar content in seeds is an important quality trait of soybean. In this study, 57 quantitative trait loci(QTLs) related to soluble sugar contents in soybean seeds were collected from databases and published p...Soluble sugar content in seeds is an important quality trait of soybean. In this study, 57 quantitative trait loci(QTLs) related to soluble sugar contents in soybean seeds were collected from databases and published papers. After meta-overview-collinearity integrated analysis to refine QTL intervals, eight consensus QTLs were identified. To further verify the consensus QTLs, a population of chromosome segment substitution lines(CSSLs) was analyzed. Two lines containing fragments covering the regions of consensus QTLs and the recurrent parent were selected: one line showed high soluble sugar contents associated with a consensus QTL fragment, and the other line showed low soluble sugar contents. Transcriptome sequencing was conducted for these two lines at the early, middle, and late stages of seed development, which identified 158, 109 and 329 differentially expressed genes, respectively. Based on the analyses of re-sequencing data of the CSSLs and the consensus QTL region, three candidate genes(Glyma.19 G146800, Glyma.19 G122500, and Glyma.19 G128500) were identified in the genetic fragments introduced from wild soybean. Sequence comparisons between the two CSSL parents SN14 and ZYD00006 revealed a single nucleotide polymorphism(SNP) mutation in the coding sequence of Glyma.19 G122500, causing a nonsynonymous mutation in the amino acid sequence that affected the predicted protein structure. A Kompetitive allele-specific PCR(KASP) marker was developed based on this SNP and used to evaluate the CSSLs. These results lay the foundation for further research to identify genes related to soluble sugar contents in soybean seeds and for future soybean breeding.展开更多
基金financially supported by the National Natural Science Foundation of China(31701449,31971968,31971899,and 31501332)the Natural Science Foundation of Heilongjiang,China(QC2017013)+7 种基金the National Key R&D Program of China(2016YFD0100500,2016YFD0100300 and 2016YFD0100201-21)the Special Financial Aid to PostDoctor Research Fellow in Heilongjiang,China(LBHTZ1714)the International Postdoctoral Exchange Fellowship Program of China Postdoctoral Council(20180004)the China Post Doctoral Project,China(2015M581419)the Post-Doctoral Project of Northeast Agricultural University,China(NEAUBH-19002)the Heilongjiang Funds for Distinguished Young Scientists,China(JC2016004 and JC2017006)the Dongnongxuezhe Project,China(to Chen Qingshan)the the Backbone of Young Talent Scholar Project(to Qi Zhaoming,18XG01)of Northeast Agricultural University,China。
文摘Soluble sugar content in seeds is an important quality trait of soybean. In this study, 57 quantitative trait loci(QTLs) related to soluble sugar contents in soybean seeds were collected from databases and published papers. After meta-overview-collinearity integrated analysis to refine QTL intervals, eight consensus QTLs were identified. To further verify the consensus QTLs, a population of chromosome segment substitution lines(CSSLs) was analyzed. Two lines containing fragments covering the regions of consensus QTLs and the recurrent parent were selected: one line showed high soluble sugar contents associated with a consensus QTL fragment, and the other line showed low soluble sugar contents. Transcriptome sequencing was conducted for these two lines at the early, middle, and late stages of seed development, which identified 158, 109 and 329 differentially expressed genes, respectively. Based on the analyses of re-sequencing data of the CSSLs and the consensus QTL region, three candidate genes(Glyma.19 G146800, Glyma.19 G122500, and Glyma.19 G128500) were identified in the genetic fragments introduced from wild soybean. Sequence comparisons between the two CSSL parents SN14 and ZYD00006 revealed a single nucleotide polymorphism(SNP) mutation in the coding sequence of Glyma.19 G122500, causing a nonsynonymous mutation in the amino acid sequence that affected the predicted protein structure. A Kompetitive allele-specific PCR(KASP) marker was developed based on this SNP and used to evaluate the CSSLs. These results lay the foundation for further research to identify genes related to soluble sugar contents in soybean seeds and for future soybean breeding.