Background New-generation drug-eluting stents (DES) was more effective in the treatment of in-stent restenosis (ISR) compared with the first-generation DES. Drug-eluting balloons (DEB) and new-generation DES had been ...Background New-generation drug-eluting stents (DES) was more effective in the treatment of in-stent restenosis (ISR) compared with the first-generation DES. Drug-eluting balloons (DEB) and new-generation DES had been available strategies in treatment of bare-metal stents/DES ISR (BMS/DES-ISR). Six new randomized trials have recently examined the angiographic outcomes and one-year clinical outcomes of DEB and new generation DES in BMS/DES-ISR. However, the optimal management for BMS/DES-ISR lesions remains controversial. Methods We searched the randomized clinical trials evaluating the angiographic outcomes and one-year clinical outcomes of DEB and new-generation DES in patients with BMS/DES-ISR. The primary endpoints were the angiographic outcomes, including the minimal luminal diameter (MLD), diameter stenosis %(DS%), late lumen loss (LLL), and binary restenosis (BR). Results A total of six randomized clinical trials with 1177 BMS/DES-ISR patients were included in our meta-analysis. For angiographic outcomes, there were significantly less MLD and more DS% with DEB compared to new-generation DES (MLD: MD =?0.18, 95% CI:?0.31– ?0.04, P < 0.001;DS%: MD = 5.68, 95% CI: 1.00–10.37, P < 0.001). Moreover, for one-year clinical outcomes, DEB was associated with a significant increase risk in target lesion revascularization (TLR)(RR = 2.93, 95% CI: 1.50–5.72, P = 0.002). However, DEB was associated with higher risks of major adverse cardiac event, target vessel revascularization, TLR, BR, and more DS% only in DES-ISR group. Conclusions DEB and new-generation DES have the similar clinical efficacy for the treatment of BMS-ISR. However, DES showed more MLD, less DS%, and a decreased risk of TLR for the treatment of DES-ISR.展开更多
Background The induced pluripotent stem cell (iPSC) has shown great potential in cellular therapy of myocardial infarction (MI), while its application is hampered by the low efficiency of cardiomyocyte differentia...Background The induced pluripotent stem cell (iPSC) has shown great potential in cellular therapy of myocardial infarction (MI), while its application is hampered by the low efficiency of cardiomyocyte differentiation. The present study was designed to investigate the effects of cardiotrophin-1 (CT-1) on cardiomyocyte differentiation from mouse induced pluripotent stem cells (miPSCs) and the underlying mechanisms involved. Methods The optimal treatment condition for cardiomyocyte differentiation from miPSCs was established with ideal concentration (10 ng/mL) and duration (from day 3 to day 14) of CT-1 administration. Up-regulated expression of cardiac specific genes that accounted for embryonic cardiogenesis was observed by quantitative RT-PCR. Elevated amount of a-myosin heavy chain (ct-MHC) and cardiac troponin I (cTn I) positive cells were detected by immunofluorescence staining and flow cytometry analysis in CT- 1 group. Results Transmission electron microscopic analysis revealed that cells treated with CT- 1 showed better organized sacromeric structure and more mitochondria, which are morphological characteristic of matured cardiomyocytes. Western blot demonstrated that CT-1 promotes cardiomyocyte differentiation from miPSCs partly via JAK2/STAT3/Pim-1 pathway as compared with control group. Conclusions These findings suggested that CT-1 could enhance the cardiomyocyte differentiation as well as the maturation of mouse induced pluripotent stem cell derived cardiomyocytes by regulating JAK2/STAT3/Pim-1 signaling pathway.展开更多
Impurity agglomeration has a significant influence on shock response of metal materials.In this paper,the mechanism of Ti-clusters in metal Al under shock loading is investigated by non-equilibrium molecular dynamics ...Impurity agglomeration has a significant influence on shock response of metal materials.In this paper,the mechanism of Ti-clusters in metal Al under shock loading is investigated by non-equilibrium molecular dynamics simulations.Our results show that the Ti-cluster has obvious effects on the dislocation initiation and melting of bulk Al.First,the Ti clusters induces the strain concentrate and leads the dislocations to be initiated from the interface of Ti cluster.Second,dislocation distribution from the Ti-cluster model results in a formation of a grid-like structure,while the dislocation density is reduced compared with that from the perfect Al model.Third,the critical shock velocity of dislocation from the Ti-cluster model is lower than from perfect Al model.Furthermore,it is also found that the temperature near the interface of Ti-cluster is100 K–150 K higher than in the other areas,which means that Ti-cluster interface melts earlier than the bulk area.展开更多
Background:Hepatocellular carcinoma(HCC)is frequently associated withmetabolism dysfunction.Increasing evidence has demonstrated the crucial role of lipidmetabolismin HCC progression.The function of apolipoprotein F(A...Background:Hepatocellular carcinoma(HCC)is frequently associated withmetabolism dysfunction.Increasing evidence has demonstrated the crucial role of lipidmetabolismin HCC progression.The function of apolipoprotein F(ApoF),a lipid transfer inhibitor protein,in HCC is incompletely understood.We aimed to evaluate the functional role of ApoF in HCC in this study.Methods:We used quantitative reverse-transcription polymerase chain reaction(qRT-PCR)to detect ApoF mRNA expression in HCC tissues and hepatoma cell lines(SMMC-7721,HepG2,and Huh7).Immunohistochemistry was performed to detect the expression of ApoF in HCC tissues.The associations between ApoF expression and clinicopathological features as well as HCC prognosis were analyzed.The effect of ApoF on cellular proliferation and growth of SMMC-7721 and Huh7 cells was examined in vitro and in vivo.Results:ApoF expression was significantly down-regulated at both mRNA and protein levels in HCC tissues as compared with adjacent tissues.In SMMC-7721 and Huh7 HCC cells,ApoF overexpression inhibited cell proliferation and migration.In a xenograft nude mouse model,ApoF overexpression effectively controlled HCC growth.Kaplan–Meier analysis results showed that the recurrence-free survival rate of HCC patients with low ApoF expression was significantly lower than that of other HCC patients.Low ApoF expression was associated with several clinicopathological features such as liver cirrhosis,Barcelona Clinic Liver Cancer stage and tumor-node-metastasis stage.Conclusions:ApoF expression was down-regulated in HCC,which was associated with low recurrence-free survival rate.ApoF may serve as a tumor suppressor in HCC and be a potential application for the treatment of this disease.展开更多
To detect gatifloxacin (GAT) residue in swine urine, an electrochemical immunoassay was established, An indirect competitive immunoassay was developed, in which the coating antigen is immobilized in an enzyme-linked...To detect gatifloxacin (GAT) residue in swine urine, an electrochemical immunoassay was established, An indirect competitive immunoassay was developed, in which the coating antigen is immobilized in an enzyme-linked immunosorbent assay (ELISA) plate and GAT residue from the sample competes with the limited binding sites in added anti-GAT antibody. Horseradish peroxidase (HRP) conjugated to goat anti-rabbit IgG was used as the enzymatic label. A carbon fiber working electrode was constructed and current signals were detected by using hydrogen peroxide as a substrate and hydroquinone as an electrochemical mediator. The electrochemical immunoassay was evaluated by analysis of GAT in buffer or swine urine and an average value of half inhibition concentration (IC50) of 8.9 ng/ml was obtained. Excellent specificity of the antibody was achieved with little cross-reaction with Iomefloxacin (3.0%), ciprofloxacin (3.0%), and ofloxacin (1.9%) among commonly used (fluoro)quinolones. In conclusion, the im- munoassay system developed in this research can be used as a rapid, powerful and on-site analytical tool to detect GAT residue in foods and food products.展开更多
基金supported by the National Natural Science Foundation of China(No.81671731)the Capital Clinical Feature Research Project(Z171100001017158)
文摘Background New-generation drug-eluting stents (DES) was more effective in the treatment of in-stent restenosis (ISR) compared with the first-generation DES. Drug-eluting balloons (DEB) and new-generation DES had been available strategies in treatment of bare-metal stents/DES ISR (BMS/DES-ISR). Six new randomized trials have recently examined the angiographic outcomes and one-year clinical outcomes of DEB and new generation DES in BMS/DES-ISR. However, the optimal management for BMS/DES-ISR lesions remains controversial. Methods We searched the randomized clinical trials evaluating the angiographic outcomes and one-year clinical outcomes of DEB and new-generation DES in patients with BMS/DES-ISR. The primary endpoints were the angiographic outcomes, including the minimal luminal diameter (MLD), diameter stenosis %(DS%), late lumen loss (LLL), and binary restenosis (BR). Results A total of six randomized clinical trials with 1177 BMS/DES-ISR patients were included in our meta-analysis. For angiographic outcomes, there were significantly less MLD and more DS% with DEB compared to new-generation DES (MLD: MD =?0.18, 95% CI:?0.31– ?0.04, P < 0.001;DS%: MD = 5.68, 95% CI: 1.00–10.37, P < 0.001). Moreover, for one-year clinical outcomes, DEB was associated with a significant increase risk in target lesion revascularization (TLR)(RR = 2.93, 95% CI: 1.50–5.72, P = 0.002). However, DEB was associated with higher risks of major adverse cardiac event, target vessel revascularization, TLR, BR, and more DS% only in DES-ISR group. Conclusions DEB and new-generation DES have the similar clinical efficacy for the treatment of BMS-ISR. However, DES showed more MLD, less DS%, and a decreased risk of TLR for the treatment of DES-ISR.
基金This work was supported by the National Funds for Distinguished Young Scientists of China (No. 81325009) and National Nature Science Foundation of China (No. 81270168, No. 81227901), (Feng Cao BWS12J037), Innovation Team granted by Ministry of Education PRC (IRT1053), National Basic Research Program of China (2012CB518101). Shaanxi Province Program (2013K12-02-03, 2014KCT-20). The authors declare no conflict of interest.
文摘Background The induced pluripotent stem cell (iPSC) has shown great potential in cellular therapy of myocardial infarction (MI), while its application is hampered by the low efficiency of cardiomyocyte differentiation. The present study was designed to investigate the effects of cardiotrophin-1 (CT-1) on cardiomyocyte differentiation from mouse induced pluripotent stem cells (miPSCs) and the underlying mechanisms involved. Methods The optimal treatment condition for cardiomyocyte differentiation from miPSCs was established with ideal concentration (10 ng/mL) and duration (from day 3 to day 14) of CT-1 administration. Up-regulated expression of cardiac specific genes that accounted for embryonic cardiogenesis was observed by quantitative RT-PCR. Elevated amount of a-myosin heavy chain (ct-MHC) and cardiac troponin I (cTn I) positive cells were detected by immunofluorescence staining and flow cytometry analysis in CT- 1 group. Results Transmission electron microscopic analysis revealed that cells treated with CT- 1 showed better organized sacromeric structure and more mitochondria, which are morphological characteristic of matured cardiomyocytes. Western blot demonstrated that CT-1 promotes cardiomyocyte differentiation from miPSCs partly via JAK2/STAT3/Pim-1 pathway as compared with control group. Conclusions These findings suggested that CT-1 could enhance the cardiomyocyte differentiation as well as the maturation of mouse induced pluripotent stem cell derived cardiomyocytes by regulating JAK2/STAT3/Pim-1 signaling pathway.
基金the National Natural Science Foundation of China(Grant No.12072044)。
文摘Impurity agglomeration has a significant influence on shock response of metal materials.In this paper,the mechanism of Ti-clusters in metal Al under shock loading is investigated by non-equilibrium molecular dynamics simulations.Our results show that the Ti-cluster has obvious effects on the dislocation initiation and melting of bulk Al.First,the Ti clusters induces the strain concentrate and leads the dislocations to be initiated from the interface of Ti cluster.Second,dislocation distribution from the Ti-cluster model results in a formation of a grid-like structure,while the dislocation density is reduced compared with that from the perfect Al model.Third,the critical shock velocity of dislocation from the Ti-cluster model is lower than from perfect Al model.Furthermore,it is also found that the temperature near the interface of Ti-cluster is100 K–150 K higher than in the other areas,which means that Ti-cluster interface melts earlier than the bulk area.
基金This study was supported by grants from the National Natural Science Foundation of China[No.81572726]the Natural Science Foundation of Guangdong Province[No.2018A030313641 and No.2016A030313848]+1 种基金the Science and Technology Planning Project of Guangdong Province[No.2014A020212122 and No.2016A020212004]the Medical Research Foundation of Guangdong Province[No.A2016312].
文摘Background:Hepatocellular carcinoma(HCC)is frequently associated withmetabolism dysfunction.Increasing evidence has demonstrated the crucial role of lipidmetabolismin HCC progression.The function of apolipoprotein F(ApoF),a lipid transfer inhibitor protein,in HCC is incompletely understood.We aimed to evaluate the functional role of ApoF in HCC in this study.Methods:We used quantitative reverse-transcription polymerase chain reaction(qRT-PCR)to detect ApoF mRNA expression in HCC tissues and hepatoma cell lines(SMMC-7721,HepG2,and Huh7).Immunohistochemistry was performed to detect the expression of ApoF in HCC tissues.The associations between ApoF expression and clinicopathological features as well as HCC prognosis were analyzed.The effect of ApoF on cellular proliferation and growth of SMMC-7721 and Huh7 cells was examined in vitro and in vivo.Results:ApoF expression was significantly down-regulated at both mRNA and protein levels in HCC tissues as compared with adjacent tissues.In SMMC-7721 and Huh7 HCC cells,ApoF overexpression inhibited cell proliferation and migration.In a xenograft nude mouse model,ApoF overexpression effectively controlled HCC growth.Kaplan–Meier analysis results showed that the recurrence-free survival rate of HCC patients with low ApoF expression was significantly lower than that of other HCC patients.Low ApoF expression was associated with several clinicopathological features such as liver cirrhosis,Barcelona Clinic Liver Cancer stage and tumor-node-metastasis stage.Conclusions:ApoF expression was down-regulated in HCC,which was associated with low recurrence-free survival rate.ApoF may serve as a tumor suppressor in HCC and be a potential application for the treatment of this disease.
基金supported by the National High-Tech R&D Program(863)of China(Nos.07AA10Z435 and 2007AA06A407)the National Natural Science Foundation of China(No.20675048)+1 种基金the Fundamental Research Funds for the Central Universities(No.65011121)the Shandong Provincial Natural Science Foundation(No.Y2008B31),China
文摘To detect gatifloxacin (GAT) residue in swine urine, an electrochemical immunoassay was established, An indirect competitive immunoassay was developed, in which the coating antigen is immobilized in an enzyme-linked immunosorbent assay (ELISA) plate and GAT residue from the sample competes with the limited binding sites in added anti-GAT antibody. Horseradish peroxidase (HRP) conjugated to goat anti-rabbit IgG was used as the enzymatic label. A carbon fiber working electrode was constructed and current signals were detected by using hydrogen peroxide as a substrate and hydroquinone as an electrochemical mediator. The electrochemical immunoassay was evaluated by analysis of GAT in buffer or swine urine and an average value of half inhibition concentration (IC50) of 8.9 ng/ml was obtained. Excellent specificity of the antibody was achieved with little cross-reaction with Iomefloxacin (3.0%), ciprofloxacin (3.0%), and ofloxacin (1.9%) among commonly used (fluoro)quinolones. In conclusion, the im- munoassay system developed in this research can be used as a rapid, powerful and on-site analytical tool to detect GAT residue in foods and food products.