Thermally responsive liquid crystal elastomers (LCEs) hold great promise in applications of soft robots and actuators because of the induced size and shape change with temperature. Experiments have successfully demons...Thermally responsive liquid crystal elastomers (LCEs) hold great promise in applications of soft robots and actuators because of the induced size and shape change with temperature. Experiments have successfully demonstrated that the LCE based bimorphs can be effective soft robots once integrated with soft sensors and thermal actuators. Here, we present an analytical transient thermo-mechanical model for a bimorph structure based soft robot, which consists of a strip of LCE and a thermal inert polymer actuated by an ultra-thin stretchable open-mesh shaped heater to mimic the unique locomotion behaviors of an inchworm. The coupled mechanical and thermal analysis based on the thermo-mechanical theory is carried out to underpin the transient bending behavior, and a systematic understanding is therefore achieved. The key analytical results reveal that the thickness and the modulus ratio of the LCE and the inert polymer layer dominate the transient bending deformation. The analytical results will not only render fundamental understanding of the actuation of bimorph structures, but also facilitate the rational design of soft robotics.展开更多
As thermal protection substrates for wearable electronics,functional soft composites made of polymer materials embedded with phase change materials and metal layers demonstrate unique capabilities for the thermal prot...As thermal protection substrates for wearable electronics,functional soft composites made of polymer materials embedded with phase change materials and metal layers demonstrate unique capabilities for the thermal protection of human skin.Here,we develop an analytical transient phase change heat transfer model to investigate the thermal performance of a wearable electronic device with a thermal protection substrate.The model is validated by experiments and the finite element analysis(FEA).The effects of the substrate structure size and heat source power input on the temperature management efficiency are investigated systematically and comprehensively.The results show that the objective of thermal management for wearable electronics is achieved by the following thermal protection mechanism.The metal thin film helps to dissipate heat along the in-plane direction by reconfiguring the direction of heat flow,while the phase change material assimilates excessive heat.These results will not only promote the fundamental understanding of the thermal properties of wearable electronics incorporating thermal protection substrates,but also facilitate the rational design of thermal protection substrates for wearable electronics.展开更多
Pervasive transcription of the mammalian genome produces hundreds of thousands of noncoding RNAs(ncRNAs).Numerous studies have suggested that some of these ncRNAs regulate multiple cellular processes and play importan...Pervasive transcription of the mammalian genome produces hundreds of thousands of noncoding RNAs(ncRNAs).Numerous studies have suggested that some of these ncRNAs regulate multiple cellular processes and play important roles in physiological and pathological processes.Notably,a large subset of ncRNAs is enriched on chromatin and participates in regulating gene expression and the dynamics of chromatin structure and status.In this review,we summarize recent advances in the functional study of chromatin-associated ncRNAs and mechanistic insights into how these ncRNAs associate with chromatin.We also discuss the potential future challenges which still need to be overcome in this field.展开更多
Dear Editor, In mammalian genomes, pervasive transcription produces thousands of long non-coding RNA (IncRNA) transcripts (Olebali et al., 2012; Hon et al., 2017). Compared to protein-coding mRNAs, IncRNAs are le...Dear Editor, In mammalian genomes, pervasive transcription produces thousands of long non-coding RNA (IncRNA) transcripts (Olebali et al., 2012; Hon et al., 2017). Compared to protein-coding mRNAs, IncRNAs are less conserved, and often exhibit low-level, developmental stage-and tissue-specific expression (Pauli et al., 2011; Hu et al., 2012; Lee, 2012; Ulitsky and Bartel, 2013; Cech and Steitz, 2014; Hon et al., 2017). Many IncRNAs are strongly correlated with their neighboring mRNA genes in terms of expression and function, and tend to regulate nearby transcription (Orom et al., 2010; Engreitz et al., 2016; Luo etal., 2016). It has been implicated that IncRNAs play versatile roles in regulating diverse aspects of cell biology through mechanisms at multiple levels (Pauli et al., 2011; Lee.展开更多
Background:T-cell acute lymphoblastic leukemia(T-ALL)is an uncommon and aggressive subtype of acute lymphoblastic leukemia(ALL).In the serum of T-ALL patients,the activity of lactate dehydrogenase A(LDHA)is increased....Background:T-cell acute lymphoblastic leukemia(T-ALL)is an uncommon and aggressive subtype of acute lymphoblastic leukemia(ALL).In the serum of T-ALL patients,the activity of lactate dehydrogenase A(LDHA)is increased.We proposed that targeting LDHA may be a potential strategy to improve T-ALL outcomes.The current study was conducted to investigate the antileukemic effect of LDHA gene-targeting treatment on T-ALL and the underlying molecular mechanism.Methods:Primary T-ALL cell lines Jurkat and DU528 were treated with the LDH inhibitor oxamate.MTT,colony formation,apoptosis,and cell cycle assays were performed to investigate the effects of oxamate on T-ALL cells.Quantitative real-time PCR(qPCR)and Western blotting analyses were applied to determine the related signaling pathways.A mitochondrial reactive oxygen species(ROS)assay was performed to evaluate ROS production after T-ALL cells were treated with oxamate.A T-ALL transgenic zebrafish model with LDHA gene knockdown was established using CRISPR/Cas9 gene-editing technology,and then TUNEL,Western blotting,and T-ALL tumor progression analyses were conducted to investigate the effects of LDHA gene knockdown on T-ALL transgenic zebrafish.Results:Oxamate significantly inhibited proliferation and induced apoptosis of Jurkat and DU528 cells.It also arrested Jurkat and DU528 cells in G0/G1 phase and stimulated ROS production(all P<0.001).Blocking LDHA significantly decreased the gene and protein expression of c-Myc,as well as the levels of phosphorylated serine/threonine kinase(AKT)and glycogen synthase kinase 3 beta(GSK-3β)in the phosphatidylinositol 3′-kinase(PI3K)signaling pathway.LDHA gene knockdown delayed disease progression and down-regulated c-Myc mRNA and protein expression in T-ALL transgenic zebrafish.Conclusion:Targeting LDHA exerted an antileukemic effect on T-ALL,representing a potential strategy for T-ALL treatment.展开更多
Super-enhancers(SEs)comprise large clusters of enhancers,which are co-occupied by multiple lineage-specific and master tran-scription factors,and play pivotal roles in regulating gene expression and cell fate determin...Super-enhancers(SEs)comprise large clusters of enhancers,which are co-occupied by multiple lineage-specific and master tran-scription factors,and play pivotal roles in regulating gene expression and cell fate determination.However,it is still largely un-known whether and how SEs are regulated by the noncoding portion of the genome.Here,through genome-wide analysis,wefound that tpng noncoding RNA(IncRNA)genes preferentially lie next to SEs.In mouse embryonic stem cells(mESCs),depletionof$E-associated IlncRNA transcripts dysregulated the activity of their nearby SEs.Specifically,we revealed a critical regulatoryrole of the IncRNA gene Platr22 in modulating the activity of a nearby SE and the expression of the nearby pluripotency regulatorZFP281.Through these regulatory events,Platr22 contributes to pluripotency maintenance and proper differentiation of mESCs.Mechanistically,Platr22 transcripts coat chromatin near the SE region and interact with DDX5 and hnRNP-L.DDX5 further recruitsp300 and other factors related to active transcription.We propose that these factors assemble into a transcription hub,thus pro-moting an open and active epigenetic chromatin state.0ur study highlights an unanticipated role for a class of lncRNAs in epige-netically controlling the activity and vulnerability to perturbation of nearby SEs for cell fate determination.展开更多
基金Project supported by the National Basic Research Program(No.2015CB351901)the National Natural Science Foundation of China(Nos.11372272,11622221,11621062,11502009,and 11772030)+2 种基金the Doctoral New Investigator Grant from American Chemical Society Petroleum Research Fund of the National Science Foundation(Nos.1509763 and 1554499)the Opening Fund of State Key Laboratory for Strength and Vibration of Mechanical Structures,Xi’an Jiaotong University(No.SV2018-KF-13)the Fundamental Research Funds for the Central Universities(No.2017XZZX002-11)
文摘Thermally responsive liquid crystal elastomers (LCEs) hold great promise in applications of soft robots and actuators because of the induced size and shape change with temperature. Experiments have successfully demonstrated that the LCE based bimorphs can be effective soft robots once integrated with soft sensors and thermal actuators. Here, we present an analytical transient thermo-mechanical model for a bimorph structure based soft robot, which consists of a strip of LCE and a thermal inert polymer actuated by an ultra-thin stretchable open-mesh shaped heater to mimic the unique locomotion behaviors of an inchworm. The coupled mechanical and thermal analysis based on the thermo-mechanical theory is carried out to underpin the transient bending behavior, and a systematic understanding is therefore achieved. The key analytical results reveal that the thickness and the modulus ratio of the LCE and the inert polymer layer dominate the transient bending deformation. The analytical results will not only render fundamental understanding of the actuation of bimorph structures, but also facilitate the rational design of soft robotics.
基金Project supported by the National Natural Science Foundation of China(No.11772030)the Aeronautical Science Foundation of China(No.2018ZC51030)the Opening fund of State Key Laboratory of Structural Analysis for Industrial Equipment of Dalian University of Technology(No.GZ19117)。
文摘As thermal protection substrates for wearable electronics,functional soft composites made of polymer materials embedded with phase change materials and metal layers demonstrate unique capabilities for the thermal protection of human skin.Here,we develop an analytical transient phase change heat transfer model to investigate the thermal performance of a wearable electronic device with a thermal protection substrate.The model is validated by experiments and the finite element analysis(FEA).The effects of the substrate structure size and heat source power input on the temperature management efficiency are investigated systematically and comprehensively.The results show that the objective of thermal management for wearable electronics is achieved by the following thermal protection mechanism.The metal thin film helps to dissipate heat along the in-plane direction by reconfiguring the direction of heat flow,while the phase change material assimilates excessive heat.These results will not only promote the fundamental understanding of the thermal properties of wearable electronics incorporating thermal protection substrates,but also facilitate the rational design of thermal protection substrates for wearable electronics.
基金the National Natural Science Foundation of China(31925015,32122019,32270582).
文摘Pervasive transcription of the mammalian genome produces hundreds of thousands of noncoding RNAs(ncRNAs).Numerous studies have suggested that some of these ncRNAs regulate multiple cellular processes and play important roles in physiological and pathological processes.Notably,a large subset of ncRNAs is enriched on chromatin and participates in regulating gene expression and the dynamics of chromatin structure and status.In this review,we summarize recent advances in the functional study of chromatin-associated ncRNAs and mechanistic insights into how these ncRNAs associate with chromatin.We also discuss the potential future challenges which still need to be overcome in this field.
文摘Dear Editor, In mammalian genomes, pervasive transcription produces thousands of long non-coding RNA (IncRNA) transcripts (Olebali et al., 2012; Hon et al., 2017). Compared to protein-coding mRNAs, IncRNAs are less conserved, and often exhibit low-level, developmental stage-and tissue-specific expression (Pauli et al., 2011; Hu et al., 2012; Lee, 2012; Ulitsky and Bartel, 2013; Cech and Steitz, 2014; Hon et al., 2017). Many IncRNAs are strongly correlated with their neighboring mRNA genes in terms of expression and function, and tend to regulate nearby transcription (Orom et al., 2010; Engreitz et al., 2016; Luo etal., 2016). It has been implicated that IncRNAs play versatile roles in regulating diverse aspects of cell biology through mechanisms at multiple levels (Pauli et al., 2011; Lee.
基金This work was supported by the National Natural Science Foundation of China(81200368,81670160)the Hunan Natural Science Foundation(2017JJ2355).
文摘Background:T-cell acute lymphoblastic leukemia(T-ALL)is an uncommon and aggressive subtype of acute lymphoblastic leukemia(ALL).In the serum of T-ALL patients,the activity of lactate dehydrogenase A(LDHA)is increased.We proposed that targeting LDHA may be a potential strategy to improve T-ALL outcomes.The current study was conducted to investigate the antileukemic effect of LDHA gene-targeting treatment on T-ALL and the underlying molecular mechanism.Methods:Primary T-ALL cell lines Jurkat and DU528 were treated with the LDH inhibitor oxamate.MTT,colony formation,apoptosis,and cell cycle assays were performed to investigate the effects of oxamate on T-ALL cells.Quantitative real-time PCR(qPCR)and Western blotting analyses were applied to determine the related signaling pathways.A mitochondrial reactive oxygen species(ROS)assay was performed to evaluate ROS production after T-ALL cells were treated with oxamate.A T-ALL transgenic zebrafish model with LDHA gene knockdown was established using CRISPR/Cas9 gene-editing technology,and then TUNEL,Western blotting,and T-ALL tumor progression analyses were conducted to investigate the effects of LDHA gene knockdown on T-ALL transgenic zebrafish.Results:Oxamate significantly inhibited proliferation and induced apoptosis of Jurkat and DU528 cells.It also arrested Jurkat and DU528 cells in G0/G1 phase and stimulated ROS production(all P<0.001).Blocking LDHA significantly decreased the gene and protein expression of c-Myc,as well as the levels of phosphorylated serine/threonine kinase(AKT)and glycogen synthase kinase 3 beta(GSK-3β)in the phosphatidylinositol 3′-kinase(PI3K)signaling pathway.LDHA gene knockdown delayed disease progression and down-regulated c-Myc mRNA and protein expression in T-ALL transgenic zebrafish.Conclusion:Targeting LDHA exerted an antileukemic effect on T-ALL,representing a potential strategy for T-ALL treatment.
基金Grant support is from the National Basic Research Program of China(2017YFA050420A and 2018YFA0107604)the National Natural Science Foundation of China(31630095 and 31925015)+1 种基金the Center for Life Science at Tsinghua UniversityWe thank J.Wang,X.Fu,B.Zhou,and Shen laboratory members for insightful discussion and suggestions.
文摘Super-enhancers(SEs)comprise large clusters of enhancers,which are co-occupied by multiple lineage-specific and master tran-scription factors,and play pivotal roles in regulating gene expression and cell fate determination.However,it is still largely un-known whether and how SEs are regulated by the noncoding portion of the genome.Here,through genome-wide analysis,wefound that tpng noncoding RNA(IncRNA)genes preferentially lie next to SEs.In mouse embryonic stem cells(mESCs),depletionof$E-associated IlncRNA transcripts dysregulated the activity of their nearby SEs.Specifically,we revealed a critical regulatoryrole of the IncRNA gene Platr22 in modulating the activity of a nearby SE and the expression of the nearby pluripotency regulatorZFP281.Through these regulatory events,Platr22 contributes to pluripotency maintenance and proper differentiation of mESCs.Mechanistically,Platr22 transcripts coat chromatin near the SE region and interact with DDX5 and hnRNP-L.DDX5 further recruitsp300 and other factors related to active transcription.We propose that these factors assemble into a transcription hub,thus pro-moting an open and active epigenetic chromatin state.0ur study highlights an unanticipated role for a class of lncRNAs in epige-netically controlling the activity and vulnerability to perturbation of nearby SEs for cell fate determination.