Regulated cell death is a genetically determined form of programmed cell death that commonly occurs during the development of living organisms.This process plays a crucial role in modulating homeostasis and is evoluti...Regulated cell death is a genetically determined form of programmed cell death that commonly occurs during the development of living organisms.This process plays a crucial role in modulating homeostasis and is evolutionarily conserved across a diverse range of living organisms.Ferroptosis is a classic regulatory mode of cell death.Extensive studies of regulatory cell death in Alzheimer’s disease have yielded increasing evidence that fe rroptosis is closely related to the occurrence,development,and prognosis of Alzheimer’s disease.This review summarizes the molecular mechanisms of ferroptosis and recent research advances in the role of ferro ptosis in Alzheimer’s disease.Our findings are expected to serve as a theoretical and experimental foundation for clinical research and targeted therapy for Alzheimer’s disease.展开更多
The relationship mechanism between the material pore structures and cathodic iodine chemistry plays a vital role in efficient Zn-I_(2) batteries,but is unclear,retarding further advances.This work innovatively indicat...The relationship mechanism between the material pore structures and cathodic iodine chemistry plays a vital role in efficient Zn-I_(2) batteries,but is unclear,retarding further advances.This work innovatively indicates a great contribution of∼2.5nm pore structure of nanocarbons to efficient iodine adsorption,rapid I^(−)↔I_(2) conversion,and polyiodide inhibition,via scrupulously designing catalysts with controllable pore sizes systematically.The I_(2)-loading within the designed nitrogen-doped nanocarbons can reach up to as high as 60.8 wt%.The batteries based on the cathode deliver impressive performances with a large capacity of 178.8 mAh/g and long-term cycling stability more than 4000 h at 5.0 C.Notably,these is no polyiodide such as I_(3)−and I_(5)−detected during the charge-discharge processes from comprehensive electrochemical cyclic voltammetry,X-ray photoelectron spectroscopy,and Raman technique.This work provides a novel knowledge-guided concept for rational pore design,promising better Zn-I_(2) batteries,which is also hoped to benefit other advanced energy technologies,such as Li-S,Li-ion,and Al-I_(2) batteries.展开更多
基金supported by the National Natural Science Foundation of China,No.81501106(to CF)Fund of Taishan Scholar Project(to CF)+1 种基金the Natural Science Foundation of Shandong Province,No.ZR2020QH106(to YH)the Medical and Health Science and Technology Development Plan of Shandong Province,No.202203010799(to QS)。
文摘Regulated cell death is a genetically determined form of programmed cell death that commonly occurs during the development of living organisms.This process plays a crucial role in modulating homeostasis and is evolutionarily conserved across a diverse range of living organisms.Ferroptosis is a classic regulatory mode of cell death.Extensive studies of regulatory cell death in Alzheimer’s disease have yielded increasing evidence that fe rroptosis is closely related to the occurrence,development,and prognosis of Alzheimer’s disease.This review summarizes the molecular mechanisms of ferroptosis and recent research advances in the role of ferro ptosis in Alzheimer’s disease.Our findings are expected to serve as a theoretical and experimental foundation for clinical research and targeted therapy for Alzheimer’s disease.
基金supported by the Tianjin Natural Science Foundation of China(Nos.20JCZDJC00280 and 20JCYBJC00380).
文摘The relationship mechanism between the material pore structures and cathodic iodine chemistry plays a vital role in efficient Zn-I_(2) batteries,but is unclear,retarding further advances.This work innovatively indicates a great contribution of∼2.5nm pore structure of nanocarbons to efficient iodine adsorption,rapid I^(−)↔I_(2) conversion,and polyiodide inhibition,via scrupulously designing catalysts with controllable pore sizes systematically.The I_(2)-loading within the designed nitrogen-doped nanocarbons can reach up to as high as 60.8 wt%.The batteries based on the cathode deliver impressive performances with a large capacity of 178.8 mAh/g and long-term cycling stability more than 4000 h at 5.0 C.Notably,these is no polyiodide such as I_(3)−and I_(5)−detected during the charge-discharge processes from comprehensive electrochemical cyclic voltammetry,X-ray photoelectron spectroscopy,and Raman technique.This work provides a novel knowledge-guided concept for rational pore design,promising better Zn-I_(2) batteries,which is also hoped to benefit other advanced energy technologies,such as Li-S,Li-ion,and Al-I_(2) batteries.