BACKGROUND Advancements in laparoscopic technology and a deeper understanding of intra-hepatic anatomy have led to the establishment of more precise laparoscopic hepatectomy(LH)techniques.The indocyanine green(ICG)flu...BACKGROUND Advancements in laparoscopic technology and a deeper understanding of intra-hepatic anatomy have led to the establishment of more precise laparoscopic hepatectomy(LH)techniques.The indocyanine green(ICG)fluorescence navi-gation technique has emerged as the most effective method for identifying hepatic regions,potentially overcoming the limitations of LH.While laparoscopic left hemihepatectomy(LLH)is a standardized procedure,there is a need for innova-tive strategies to enhance its outcomes.important anatomical markers,surgical skills,and ICG staining methods.METHODS Thirty-seven patients who underwent ICG fluorescence-guided LLH at Qujing Second People's Hospital between January 2019 and February 2022 were retrospectively analyzed.The cranial-dorsal approach was performed which involves dissecting the left hepatic vein cephalad,isolating the Arantius ligament,exposing the middle hepatic vein,and dissecting the parenchyma from the dorsal to the foot in order to complete the anatomical LLH.The surgical methods,as well as intra-and post-surgical data,were recorded and analyzed.Our hospital’s Medical Ethics Committee approved this study(Ethical review:2022-019-01).RESULTS Intraoperative blood loss during LLH was 335.68±99.869 mL and the rates of transfusion and conversion to laparotomy were 13.5%and 0%,respectively.The overall incidence of complications throughout the follow-up(median of 18 months;range 1-36 months)was 21.6%.No mortality or severe complications(level IV)were reported.CONCLUSION LLH has the potential to become a novel,standardized approach that can effectively,safely,and simply expose the middle hepatic vein and meet the requirements of precision surgery.展开更多
The well-developed coal electricity generation and coal chemical industries have led to huge carbon dioxide(CO_(2))emissions in the northeastern Ordos Basin.The geological storage of CO_(2) in saline aquifers is an ef...The well-developed coal electricity generation and coal chemical industries have led to huge carbon dioxide(CO_(2))emissions in the northeastern Ordos Basin.The geological storage of CO_(2) in saline aquifers is an effective backup way to achieve carbon neutrality.In this case,the potential of saline aquifers for CO_(2) storage serves as a critical basis for subsequent geological storage project.This study calculated the technical control capacities of CO_(2) of the saline aquifers in the fifth member of the Shiqianfeng Formation(the Qian-5 member)based on the statistical analysis of the logging and the drilling and core data from more than 200 wells in the northeastern Ordos Basin,as well as the sedimentary facies,formation lithology,and saline aquifer development patterns of the Qian-5 member.The results show that(1)the reservoirs of saline aquifers in the Qian-5 member,which comprise distributary channel sand bodies of deltaic plains,feature low porosities and permeabilities;(2)The study area hosts three NNE-directed saline aquifer zones,where saline aquifers generally have a single-layer thickness of 3‒8 m and a cumulative thickness of 8‒24 m;(3)The saline aquifers of the Qian-5 member have a total technical control capacity of CO_(2) of 119.25×10^(6) t.With the largest scale and the highest technical control capacity(accounting for 61%of the total technical control capacity),the Jinjie-Yulin saline aquifer zone is an important prospect area for the geological storage of CO_(2) in the saline aquifers of the Qian-5 member in the study area.展开更多
Streptococcus suis serotype 2(S.suis 2)is a zoonotic pathogen that clinically causes severe swine and human infections(such as meningitis,endocarditis,and septicemia).In order to cause widespread diseases in different...Streptococcus suis serotype 2(S.suis 2)is a zoonotic pathogen that clinically causes severe swine and human infections(such as meningitis,endocarditis,and septicemia).In order to cause widespread diseases in different organs,S.suis 2 must colonize the host,break the blood barrier,and cause exaggerated inflammation.In the last few years,most studies have focused on a single virulence factor and its influences on the host.Membrane vesicles(MVs)can be actively secreted into the extracellular environment contributing to bacteria-host interactions.Gram-negative bacteria-derived outer membrane vesicles(OMVs)were recently shown to activate host Caspase-11-mediated non-canonical inflammasome pathway via deliverance of OMV-bound lipopolysaccharide(LPS),causing host cell pyroptosis.However,little is known about the effect of the MVs from S.suis 2(Gram-positive bacteria without LPS)on cell pyroptosis.Thus,we investigated the molecular mechanism by which S.suis 2 MVs participate in endothelial cell pyroptosis.In this study,we used proteomics,electron scanning microscopy,fluorescence microscope,Western blotting,and bioassays,to investigate the MVs secreted by S.suis 2.First,we demonstrated that S.suis 2 secreted MVs with an average diameter of 72.04 nm,and 200 proteins in MVs were identified.Then,we showed that MVs were transported to cells via mainly dynamin-dependent endocytosis.The S.suis 2 MVs activated NLRP3/Caspase-1/GSDMD canonical inflammasome signaling pathway,resulting in cell pyroptosis,but it did not activate the Caspase-4/-5 pathway.More importantly,endothelial cells produce large amounts of reactive oxygen species(ROS)and lost their mitochondrial membrane potential under induction by S.suis 2 MVs.The results in this study suggest for the first time that MVs from S.suis 2 were internalized by endothelial cells via mainly dynamin-dependent endocytosis and might promote NLRP3/Caspase-1/GSDMD pathway by mitochondrial damage,which produced mtDNA and ROS under induction,leading to the pyroptosis of endothelial cells.展开更多
BACKGROUND:This study aims to explore whether Xuebijing(XBJ) can improve intestinal microcirculation dysfunction in sepsis and its mechanism.METHODS:A rat model of sepsis was established by cecal ligation and puncture...BACKGROUND:This study aims to explore whether Xuebijing(XBJ) can improve intestinal microcirculation dysfunction in sepsis and its mechanism.METHODS:A rat model of sepsis was established by cecal ligation and puncture(CLP).A total of 30 male SD rats were divided into four groups:sham group,CLP group,XBJ + axitinib group,and XBJ group.XBJ was intraperitoneally injected 2 h before CLP.Hemodynamic data(blood pressure and heart rate) were recorded.The intestinal microcirculation data of the rats were analyzed via microcirculation imaging.Enzyme-linked immunosorbent assay(ELISA) kits were used to detect the serum levels of interleukin-6(IL-6),C-reactive protein(CRP),and tumor necrosis factor-α(TNF-α) in the rats.Histological analysis and transmission electron microscopy were used to analyze the injury of small intestinal microvascular endothelial cells and small intestinal mucosa in rats.The expression of vascular endothelial growth factor A(VEGF-A),phosphoinositide 3-kinase(PI3K),phosphorylated PI3K(p-PI3K),protein kinase B(Akt),and phosphorylated Akt(p-Akt) in the small intestine was analyzed via Western blotting.RESULTS:XBJ improved intestinal microcirculation dysfunction in septic rats,alleviated the injury of small intestinal microvascular endothelial cells and small intestinal mucosa,and reduced the systemic inflammatory response.Moreover,XBJ upregulated the expression of VEGF-A,p-PI3K/total PI3K,and p-Akt/total Akt in the rat small intestine.CONCLUSION:XBJ may improve intestinal microcirculation dysfunction in septic rats possibly through the VEGF-A/PI3K/Akt signaling pathway.展开更多
Background:Soil acidifcationn caused by anthropogenic activities may aft soil biochemical cydling,bidiversity,productivity,and multiple eosystem-related functions in drylands.However,to date,such information is lackin...Background:Soil acidifcationn caused by anthropogenic activities may aft soil biochemical cydling,bidiversity,productivity,and multiple eosystem-related functions in drylands.However,to date,such information is lacking to support this hypothesis.Methods Based on a transect survey of 78 naturally assembled shrub communities,we caloulated acid deposition flux in Northwest China and evaluated its likely ecological ffets by testing three altemnative hypotheses,namely:.nidche complementarity,mass ratio,and vegetation quantity hypotheses Rao's quadratic entopy and community-weighted mean traits were employed to represent the complementary aspect of niche complementarity and mass ratio effects,respectively.Resulbs:We observed that in the past four decades,the concentrations of exchangeable base cations in soil in Northwest China have decreased significantly to the extent of having faced the risk of depletion,whereas changes in the calium carbonate content and pH of soil were not significant.Adid deposition primani ly increased the aboweground biomass and shrub density in shrublands but had no sigmificant effect on shrub richness and ecasystem multifunctionality(EMF),indicating that acid deposition had positive but weak ecological effects on dryland ecosystems.Community wd ghted mean of functional traits(representing the mass ratio hypothesis)correlated negatively with EMF,whereas both Rao's quadratic entropy(representing the niche complementarity hypothesis)and aboveground biomass(representing the vegetation quantity hypothesis)correlated positively but insignifcantly with EMF.These biodiversity-EMF relationships highlight the fragility and instability of drylands relative to forest ecasystems.Concuions:The findings from this study serve as important reference points to understand the ris of soil acidification in arid regions and its impacts on biodiversity-EMF relationships.展开更多
This paper proposes a modified iterative learning control(MILC)periodical feedback-feedforward algorithm to reduce the vibration of a rotor caused by coupled unbalance and parallel misalignment.The control of the vibr...This paper proposes a modified iterative learning control(MILC)periodical feedback-feedforward algorithm to reduce the vibration of a rotor caused by coupled unbalance and parallel misalignment.The control of the vibration of the rotor is provided by an active magnetic actuator(AMA).The iterative gain of the MILC algorithm here presented has a self-adjustment based on the magnitude of the vibration.Notch filters are adopted to extract the synchronous(1×Ω)and twice rotational frequency(2×Ω)components of the rotor vibration.Both the notch frequency of the filter and the size of feedforward storage used during the experiment have a real-time adaptation to the rotational speed.The method proposed in this work can provide effective suppression of the vibration of the rotor in case of sudden changes or fluctuations of the rotor speed.Simulations and experiments using the MILC algorithm proposed here are carried out and give evidence to the feasibility and robustness of the technique proposed.展开更多
The recycling of spent lithium-ion batteries(LIBs) is crucial for environmental protection and resource sustainability.However,the economic recovery of spent LIBs remains challenging due to low Li recovery efficiency ...The recycling of spent lithium-ion batteries(LIBs) is crucial for environmental protection and resource sustainability.However,the economic recovery of spent LIBs remains challenging due to low Li recovery efficiency and the need for multiple separation operations.Here,we propose a process involving mixed HCl-H_(2)SO_(4) leaching-spray pyrolysis for recycling spent ternary LIBs,achieving both selective Li recovery and the preparation of a ternary oxide precursor.Specifically,the process transforms spent ternary cathode(LiNi_(x)Co_yMn_(2)O_(2),NCM) powder into Li_(2)SO_(4) solution and ternary oxide,which can be directly used for synthesizing battery-grade Li_(2)CO_(3) and NCM cathode,respectively.Notably,SO_(4)^(2-) selectively precipitates with Li^(+) to form thermostable Li_(2)SO_(4) during the spray pyrolysis,which substantially improves the Li recovery efficiency by inhibiting Li evaporation and intercalation.Besides,SO_(2) emissions are avoided by controlling the molar ratio of Li^(+)/SO_(4)^(2-)(≥2:1),The mechanism of the preferential formation of Li_(2)SO_(4) is interpreted from its reverse solubility variation with temperature.During the recycling of spent NCM811,92% of Li is selectively recovered,and the regenerated NCM811 exhibits excellent cycling stability with a capacity retention of 81.7% after 300 cycles at 1 C.This work offers a simple and robust process for the recycling of spent NCM cathodes.展开更多
Constructing robust surface and bulk structure is the prerequisite for realizing high performance high voltage LiCoO_(2)(LCO).Herein,we manage to synthesize a surface Mg-doping and bulk Al-doping coreshell structured ...Constructing robust surface and bulk structure is the prerequisite for realizing high performance high voltage LiCoO_(2)(LCO).Herein,we manage to synthesize a surface Mg-doping and bulk Al-doping coreshell structured LCO,which demonstrates excellent cycling performance.Half-cell shows 94.2%capacity retention after 100 cycles at 3.0-4.6 V(vs.Li/Li^(+))cycling,and no capacity decay after 300 cycles for fullcell test(3.0-4.55 V).Based on comprehensive microanalysis and theoretical calculations,the degradation mechanisms and doping effects are systematically revealed.For the undoped LCO,high voltage cycling induces severe interfacial and bulk degradations,where cracks,stripe defects,fatigue H2 phase,and spinel phase are identified in grain bulk.For the doped LCO,Mg-doped surface shell can suppress the interfacial degradations,which not only stabilizes the surface structure by forming a thin rock-salt layer but also significantly improves the electronic conductivity,thus enabling superior rate performance.Bulk Al-doping can suppress the lattice"breathing"effect and the detrimental H3 to H1-3 phase transition,which minimizes the internal strain and defects growth,maintaining the layered structure after prolonged cycling.Combining theoretical calculations,this work deepens our understanding of the doping effects of Mg and Al,which is valuable in guiding the future material design of high voltage LCO.展开更多
Designing efficient and long-lasting non-metal electrocatalysts is an urgent task for addressing the issue of kinetic hysteresis in electrochemical oxidation reactions.The bimetallic hydroxides,catalyzing the oxygen e...Designing efficient and long-lasting non-metal electrocatalysts is an urgent task for addressing the issue of kinetic hysteresis in electrochemical oxidation reactions.The bimetallic hydroxides,catalyzing the oxygen evolution reaction(OER),have significant research potential because hydroxide reconstruction to generate an active phase is a remarkable advantage.Herein,the complete reconstruction of ultrathin CoNi(OH)_(2) nanosheets was achieved by embedding Ag nanoparticles into the hydroxide to induce a spontaneous redox reaction(SRR),forming heterojunction Ag@CoNi(OH)_(2) for bifunctional hydrolysis.Theoretical calculations and in situ Raman and ex situ characterizations revealed that the inductive effect of the Ag cation redistributed the charge to promote phase transformation to highly activate Ag-modified hydroxides.The Co-Ni dual sites in Co/NiOOH serve as novel active sites for optimizing the intermediates,thereby weakening the barrier formed by OOH^*.Ag@CoNi(OH)_(2) required a potential of 1.55 V to drive water splitting at a current density of 10 mA cm^(-2),with nearly 98.6% Faraday efficiency.Through ion induction and triggering of electron regulation in the OER via the synergistic action of the heterogeneous interface and surface reconstruction,this strategic design can overcome the limited capacity of bimetallic hydroxides and bridge the gap between the basic theory and industrialization of water decomposition.展开更多
Background Fatty liver hemorrhagic syndrome(FLHS),a fatty liver disease in laying hens,poses a grave threat to the layer industry,stemming from its ability to trigger an alarming plummet in egg production and usher in...Background Fatty liver hemorrhagic syndrome(FLHS),a fatty liver disease in laying hens,poses a grave threat to the layer industry,stemming from its ability to trigger an alarming plummet in egg production and usher in acute mortality among laying hens.Increasing evidence suggests that the onset and progression of fatty liver was closely related to mitochondria dysfunction.Sodium butyrate was demonstrated to modulate hepatic lipid metabolism,alle-viate oxidative stress and improve mitochondrial dysfunction in vitro and mice models.Nevertheless,there is limited existing research on coated sodium butyrate(CSB)to prevent FLHS in laying hens,and whether and how CSB exerts the anti-FLHS effect still needs to be explored.In this experiment,the FLHS model was induced by administering a high-energy low-protein(HELP)diet in laying hens.The objective was to investigate the effects of CSB on alleviating FLHS with a focus on the role of CSB in modulating mitochondrial function.Methods A total of 288 healthy 28-week-old Huafeng laying hens were arbitrarily allocated into 4 groups with 6 replicates each,namely,the CON group(normal diet),HELP group(HELP diet),CH500 group(500 mg/kg CSB added to HELP diet)and CH750 group(750 mg/kg CSB added to HELP diet).The duration of the trial encompassed a period of 10 weeks.Results The result revealed that CSB ameliorated the HELP-induced FLHS by improving hepatic steatosis and patho-logical damage,reducing the gene levels of fatty acid synthesis,and promoting the mRNA levels of key enzymes of fatty acid catabolism.CSB reduced oxidative stress induced by the HELP diet,upregulated the activity of GSH-Px and SOD,and decreased the content of MDA and ROS.CSB also mitigated the HELP diet-induced inflammatory response by blocking TNF-α,IL-1β,and F4/80.In addition,dietary CSB supplementation attenuated HELP-induced activation of the mitochondrial unfolded protein response(UPRmt),mitochondrial damage,and decline of ATPase activity.HELP diet decreased the autophagosome formation,and downregulated LC3B but upregulated p62 protein expression,which CSB administration reversed.CSB reduced HELP-induced apoptosis,as indicated by decreases in the Bax/Bcl-2,Caspase-9,Caspase-3,and Cyt C expression levels.Conclusions Dietary CSB could ameliorate HELP diet-induced hepatic dysfunction via modulating mitochondrial dynamics,autophagy,and apoptosis in laying hens.Consequently,CSB,as a feed additive,exhibited the capacity to prevent FLHS by modulating autophagy and lipid metabolism.展开更多
Atmospheric CO_(2)concentration is elevated globally,which has“CO_(2)fertilization effects”and potentially improves plant photosynthesis,yield,and productivity.Despite the beneficial effect of CO_(2)fertilization be...Atmospheric CO_(2)concentration is elevated globally,which has“CO_(2)fertilization effects”and potentially improves plant photosynthesis,yield,and productivity.Despite the beneficial effect of CO_(2)fertilization being modulated by vapor pressure deficit(VPD),the underlying mechanism is highly uncertain.In the present study,the potential roles of hormones in determining CO_(2)fertilization effects under contrasting high and low VPD conditions were investigated by integrated physiological and transcriptomic analyses.Beneficial CO_(2)fertilization effects were offset under high VPD conditions and were constrained by plant water stress and photosynthetic CO_(2)utilization.High VPD induced a large passive water driving force,which disrupted the water balance and consequently caused plant water deficit.Leaf water potential,turgor pressure,and hydraulic conductance declined under high VPD stress.The physiological evidence combined with transcriptomic analyses demonstrated that abscisic acid(ABA)and jasmonic acid(JA)potentially acted as drought-signaling molecules in response to high VPD stress.Increased foliar ABA and JA content triggered stomatal closure to prevent excessive water loss under high VPD stress,which simultaneously increased the diffusion resistance for CO_(2)uptake from atmosphere to leaf intercellular space.High VPD also significantly increased mesophyll resistance for CO_(2)transport from stomatal cavity to fixation site inside chloroplast.The chloroplast“sink”CO_(2)availability was constrained by stomatal and mesophyll resistance under high VPD stress,despite the atmospheric“source”CO_(2)concentration being elevated.Thus,ABA-and JA-mediated drought-resistant mechanisms potentially modified the beneficial effect of CO_(2)fertilization on photosynthesis,plant growth,and yield productivity.This study provides valuable information for improving the utilization efficiency of CO_(2)fertilization and a better understanding of the physiological processes.展开更多
This paper investigates the data collection in an unmanned aerial vehicle(UAV)-aided Internet of Things(IoT) network, where a UAV is dispatched to collect data from ground sensors in a practical and accurate probabili...This paper investigates the data collection in an unmanned aerial vehicle(UAV)-aided Internet of Things(IoT) network, where a UAV is dispatched to collect data from ground sensors in a practical and accurate probabilistic line-of-sight(LoS) channel. Especially, access points(APs) are introduced to collect data from some sensors in the unlicensed band to improve data collection efficiency. We formulate a mixed-integer non-convex optimization problem to minimize the UAV flight time by jointly designing the UAV 3D trajectory and sensors’ scheduling, while ensuring the required amount of data can be collected under the limited UAV energy. To solve this nonconvex problem, we recast the objective problem into a tractable form. Then, the problem is further divided into several sub-problems to solve iteratively, and the successive convex approximation(SCA) scheme is applied to solve each non-convex subproblem. Finally,the bisection search is adopted to speed up the searching for the minimum UAV flight time. Simulation results verify that the UAV flight time can be shortened by the proposed method effectively.展开更多
Liver cancer,one of the most common malignancies worldwide,ranks sixth in incidence and third in mortality.Liver cancer treatment options are diverse,inclu-ding surgical resection,liver transplantation,percutaneous ab...Liver cancer,one of the most common malignancies worldwide,ranks sixth in incidence and third in mortality.Liver cancer treatment options are diverse,inclu-ding surgical resection,liver transplantation,percutaneous ablation,transarterial chemoembolization,radiotherapy,chemotherapy,targeted therapy,immuno-therapy,and traditional Chinese medicine(TCM).A multidisciplinary team(MDT)is essential to customize treatment plans based on tumor staging,liver function,and performance status(PS),ensuring individualized patient care.Treatment decisions require a MDT to tailor strategies based on tumor staging,liver function,and PS,ensuring personalized care.The approval of new first-line and second-line drugs and the establishment of standard treatments based on immune checkpoint inhibitors have significantly expanded treatment options for advanced liver cancer,improving overall prognosis.However,many patients do not respond effectively to these treatments and ultimately succumb to the disease.Modern oncology treatments,while extending patient survival,often come with severe side effects,resistance,and damage to the body,negatively impacting quality of life.Huang et al's study published at World Journal of Gastroenterology rigorously validates the anticancer properties of Calculus bovis,enhancing our understanding of TCM and contributing to new liver cancer treatment strategies.For over 5000 years,TCM has been used in East Asian countries like China to treat various diseases,including liver conditions.Analysis of real-world clinical data suggests that for patients with advanced-stage tumors lacking effective treatments,integrated TCM therapies could provide significant breakthroughs.展开更多
Real-time,contact-free temperature monitoring of low to medium range(30℃-150℃)has been extensively used in industry and agriculture,which is usually realized by costly infrared temperature detection methods.This pap...Real-time,contact-free temperature monitoring of low to medium range(30℃-150℃)has been extensively used in industry and agriculture,which is usually realized by costly infrared temperature detection methods.This paper proposes an alternative approach of extracting temperature information in real time from the visible light images of the monitoring target using a convolutional neural network(CNN).A mean-square error of<1.119℃was reached in the temperature measurements of low to medium range using the CNN and the visible light images.Imaging angle and imaging distance do not affect the temperature detection using visible optical images by the CNN.Moreover,the CNN has a certain illuminance generalization ability capable of detection temperature information from the images which were collected under different illuminance and were not used for training.Compared to the conventional machine learning algorithms mentioned in the recent literatures,this real-time,contact-free temperature measurement approach that does not require any further image processing operations facilitates temperature monitoring applications in the industrial and civil fields.展开更多
In this paper,by characterizing Carleson measures,we investigate a class of bounded Toeplitz operator between weighted Bergman spaces with Békolléweights over the half-plane for all index choices.
Grain boundaries(GBs)play a crucial role on the structural stability and mechanical properties of Cu and its alloys.In this work,molecular dynamics(MD)simulations are employed to study the effects of Fe solutes on the...Grain boundaries(GBs)play a crucial role on the structural stability and mechanical properties of Cu and its alloys.In this work,molecular dynamics(MD)simulations are employed to study the effects of Fe solutes on the formation energy,excess volume,dislocations and melting behaviors of GBs in CuFe alloys.It is illustrated that Fe solute affects the structural stability of Cu GBs substantially,the formation energy of GBs is reduced,but the thickness and melting point of GBs are increased,that is,the structural stability of Cu GBs is significantly improved owing to the Fe solutes.A strong scaling law exists between the formation energy,excess volume,thickness and melting point of GBs.Therefore,Fe solid solute plays an important role in the characteristics of GBs in bi-crystal Cu.展开更多
Epithelial-mesenchymal transition(EMT)is a vital pathological feature of silica-induced pulmonary fibrosis.However,whether circRNA is involved in the process remains unclear.The present study aimed to investigate the ...Epithelial-mesenchymal transition(EMT)is a vital pathological feature of silica-induced pulmonary fibrosis.However,whether circRNA is involved in the process remains unclear.The present study aimed to investigate the role of circPVT1 in the silica-induced EMT and the underlying mechanisms.We found that an elevated expression of circPVT1 promoted EMT and enhanced the migratory capacity of silica-treated epithelial cells.The isolation of cytoplasmic and nuclear separation assay showed that circPVT1 was predominantly expressed in the cytoplasm.RNA immunoprecipitation assay and RNA pull-down experiment indicated that cytoplasmic-localized circPVT1 was capable of binding to miR-497-5p.Furthermore,we found that miR-497-5p attenuated the silica-induced EMT process by targeting transcription factor 3(TCF3),an E-cadherin transcriptional repressor,in the silica-treated epithelial cells.Collectively,these results reveal a novel role of the circPVT1/miR-497-5p/TCF3 axis in the silica-induced EMT process in lung epithelial cells.Once validated,this finding may provide a potential theoretical basis for the development of interventions and treatments for pulmonary fibrosis.展开更多
Dear Editor,In this letter,the multi-objective optimal control problem of nonlinear discrete-time systems is investigated.A data-driven policy gradient algorithm is proposed in which the action-state value function is...Dear Editor,In this letter,the multi-objective optimal control problem of nonlinear discrete-time systems is investigated.A data-driven policy gradient algorithm is proposed in which the action-state value function is used to evaluate the policy.In the policy improvement process,the policy gradient based method is employed.展开更多
A pantograph serves as a vital device for the collection of electricity in trains.However,its aerodynamic resistance can limit the train’s running speed.As installing fairings around the pantograph is known to effect...A pantograph serves as a vital device for the collection of electricity in trains.However,its aerodynamic resistance can limit the train’s running speed.As installing fairings around the pantograph is known to effectively reduce the resistance,in this study,different fairing lengths are considered and the related aerodynamic performances of pantograph are assessed.In particular,this is accomplished through numerical simulations based on the k-ωShear Stress Transport(SST)two-equation turbulence model.The results indicate that the fairing diminishes the direct impact of high-speed airflow on the pantograph,thereby reducing its aerodynamic resistance.However,it also induces interferences in the flow field around the train,leading to variations in the aerodynamic resistance and lift of train components.It is shown that a maximum reduction of 56.52%in pantograph aerodynamic resistance and a peak decrease of 3.38%in total train aerodynamic resistance can be achieved.展开更多
基金Supported by The High-level Talent Training Support Project of Yunnan Province,No.YNWR-MY-2020-053and the Key Project of the Second People's Hospital of Qujing in 2022,No.2022ynkt04。
文摘BACKGROUND Advancements in laparoscopic technology and a deeper understanding of intra-hepatic anatomy have led to the establishment of more precise laparoscopic hepatectomy(LH)techniques.The indocyanine green(ICG)fluorescence navi-gation technique has emerged as the most effective method for identifying hepatic regions,potentially overcoming the limitations of LH.While laparoscopic left hemihepatectomy(LLH)is a standardized procedure,there is a need for innova-tive strategies to enhance its outcomes.important anatomical markers,surgical skills,and ICG staining methods.METHODS Thirty-seven patients who underwent ICG fluorescence-guided LLH at Qujing Second People's Hospital between January 2019 and February 2022 were retrospectively analyzed.The cranial-dorsal approach was performed which involves dissecting the left hepatic vein cephalad,isolating the Arantius ligament,exposing the middle hepatic vein,and dissecting the parenchyma from the dorsal to the foot in order to complete the anatomical LLH.The surgical methods,as well as intra-and post-surgical data,were recorded and analyzed.Our hospital’s Medical Ethics Committee approved this study(Ethical review:2022-019-01).RESULTS Intraoperative blood loss during LLH was 335.68±99.869 mL and the rates of transfusion and conversion to laparotomy were 13.5%and 0%,respectively.The overall incidence of complications throughout the follow-up(median of 18 months;range 1-36 months)was 21.6%.No mortality or severe complications(level IV)were reported.CONCLUSION LLH has the potential to become a novel,standardized approach that can effectively,safely,and simply expose the middle hepatic vein and meet the requirements of precision surgery.
基金funded by the Top 10 key scientific and technological projects of CHN Energy in 2021 entitled Research and Demonstration of Technology for Carbon Dioxide Capture and Energy Recycling Utilization(GJNYKJ[2021]No.128,No.:GJNY-21-51)the Carbon Neutrality College(Yulin)Northwest University project entitled Design and research of large-scale CCUS cluster construction in Yulin area,Shaanxi Province(YL2022-38-01).
文摘The well-developed coal electricity generation and coal chemical industries have led to huge carbon dioxide(CO_(2))emissions in the northeastern Ordos Basin.The geological storage of CO_(2) in saline aquifers is an effective backup way to achieve carbon neutrality.In this case,the potential of saline aquifers for CO_(2) storage serves as a critical basis for subsequent geological storage project.This study calculated the technical control capacities of CO_(2) of the saline aquifers in the fifth member of the Shiqianfeng Formation(the Qian-5 member)based on the statistical analysis of the logging and the drilling and core data from more than 200 wells in the northeastern Ordos Basin,as well as the sedimentary facies,formation lithology,and saline aquifer development patterns of the Qian-5 member.The results show that(1)the reservoirs of saline aquifers in the Qian-5 member,which comprise distributary channel sand bodies of deltaic plains,feature low porosities and permeabilities;(2)The study area hosts three NNE-directed saline aquifer zones,where saline aquifers generally have a single-layer thickness of 3‒8 m and a cumulative thickness of 8‒24 m;(3)The saline aquifers of the Qian-5 member have a total technical control capacity of CO_(2) of 119.25×10^(6) t.With the largest scale and the highest technical control capacity(accounting for 61%of the total technical control capacity),the Jinjie-Yulin saline aquifer zone is an important prospect area for the geological storage of CO_(2) in the saline aquifers of the Qian-5 member in the study area.
基金supported by the National Natural Science Foundation of China(U22A20520)the Innovation Team Project of Modern Agricultural Industrial Technology System of Guangdong Province,China(2023KJ119)the Natural Science Foundation Program of Guangdong Province,China(2023A1515012206)。
文摘Streptococcus suis serotype 2(S.suis 2)is a zoonotic pathogen that clinically causes severe swine and human infections(such as meningitis,endocarditis,and septicemia).In order to cause widespread diseases in different organs,S.suis 2 must colonize the host,break the blood barrier,and cause exaggerated inflammation.In the last few years,most studies have focused on a single virulence factor and its influences on the host.Membrane vesicles(MVs)can be actively secreted into the extracellular environment contributing to bacteria-host interactions.Gram-negative bacteria-derived outer membrane vesicles(OMVs)were recently shown to activate host Caspase-11-mediated non-canonical inflammasome pathway via deliverance of OMV-bound lipopolysaccharide(LPS),causing host cell pyroptosis.However,little is known about the effect of the MVs from S.suis 2(Gram-positive bacteria without LPS)on cell pyroptosis.Thus,we investigated the molecular mechanism by which S.suis 2 MVs participate in endothelial cell pyroptosis.In this study,we used proteomics,electron scanning microscopy,fluorescence microscope,Western blotting,and bioassays,to investigate the MVs secreted by S.suis 2.First,we demonstrated that S.suis 2 secreted MVs with an average diameter of 72.04 nm,and 200 proteins in MVs were identified.Then,we showed that MVs were transported to cells via mainly dynamin-dependent endocytosis.The S.suis 2 MVs activated NLRP3/Caspase-1/GSDMD canonical inflammasome signaling pathway,resulting in cell pyroptosis,but it did not activate the Caspase-4/-5 pathway.More importantly,endothelial cells produce large amounts of reactive oxygen species(ROS)and lost their mitochondrial membrane potential under induction by S.suis 2 MVs.The results in this study suggest for the first time that MVs from S.suis 2 were internalized by endothelial cells via mainly dynamin-dependent endocytosis and might promote NLRP3/Caspase-1/GSDMD pathway by mitochondrial damage,which produced mtDNA and ROS under induction,leading to the pyroptosis of endothelial cells.
基金supported by a grant from National Natural Science Foundation of China (82272196)。
文摘BACKGROUND:This study aims to explore whether Xuebijing(XBJ) can improve intestinal microcirculation dysfunction in sepsis and its mechanism.METHODS:A rat model of sepsis was established by cecal ligation and puncture(CLP).A total of 30 male SD rats were divided into four groups:sham group,CLP group,XBJ + axitinib group,and XBJ group.XBJ was intraperitoneally injected 2 h before CLP.Hemodynamic data(blood pressure and heart rate) were recorded.The intestinal microcirculation data of the rats were analyzed via microcirculation imaging.Enzyme-linked immunosorbent assay(ELISA) kits were used to detect the serum levels of interleukin-6(IL-6),C-reactive protein(CRP),and tumor necrosis factor-α(TNF-α) in the rats.Histological analysis and transmission electron microscopy were used to analyze the injury of small intestinal microvascular endothelial cells and small intestinal mucosa in rats.The expression of vascular endothelial growth factor A(VEGF-A),phosphoinositide 3-kinase(PI3K),phosphorylated PI3K(p-PI3K),protein kinase B(Akt),and phosphorylated Akt(p-Akt) in the small intestine was analyzed via Western blotting.RESULTS:XBJ improved intestinal microcirculation dysfunction in septic rats,alleviated the injury of small intestinal microvascular endothelial cells and small intestinal mucosa,and reduced the systemic inflammatory response.Moreover,XBJ upregulated the expression of VEGF-A,p-PI3K/total PI3K,and p-Akt/total Akt in the rat small intestine.CONCLUSION:XBJ may improve intestinal microcirculation dysfunction in septic rats possibly through the VEGF-A/PI3K/Akt signaling pathway.
基金financially supported by the third xinjiang scientific expedition program (grant no.2022xjkk0901)the Strategic Priority Research Program of Chinese Academy of Sciences (No.XDA2006030102)the National Natural Sciences Foundation of China(No.42171068 and No.42330503)。
文摘Background:Soil acidifcationn caused by anthropogenic activities may aft soil biochemical cydling,bidiversity,productivity,and multiple eosystem-related functions in drylands.However,to date,such information is lacking to support this hypothesis.Methods Based on a transect survey of 78 naturally assembled shrub communities,we caloulated acid deposition flux in Northwest China and evaluated its likely ecological ffets by testing three altemnative hypotheses,namely:.nidche complementarity,mass ratio,and vegetation quantity hypotheses Rao's quadratic entopy and community-weighted mean traits were employed to represent the complementary aspect of niche complementarity and mass ratio effects,respectively.Resulbs:We observed that in the past four decades,the concentrations of exchangeable base cations in soil in Northwest China have decreased significantly to the extent of having faced the risk of depletion,whereas changes in the calium carbonate content and pH of soil were not significant.Adid deposition primani ly increased the aboweground biomass and shrub density in shrublands but had no sigmificant effect on shrub richness and ecasystem multifunctionality(EMF),indicating that acid deposition had positive but weak ecological effects on dryland ecosystems.Community wd ghted mean of functional traits(representing the mass ratio hypothesis)correlated negatively with EMF,whereas both Rao's quadratic entropy(representing the niche complementarity hypothesis)and aboveground biomass(representing the vegetation quantity hypothesis)correlated positively but insignifcantly with EMF.These biodiversity-EMF relationships highlight the fragility and instability of drylands relative to forest ecasystems.Concuions:The findings from this study serve as important reference points to understand the ris of soil acidification in arid regions and its impacts on biodiversity-EMF relationships.
基金Supported by National Natural Science Foundation of China(Grant Nos.51975037,52375075).
文摘This paper proposes a modified iterative learning control(MILC)periodical feedback-feedforward algorithm to reduce the vibration of a rotor caused by coupled unbalance and parallel misalignment.The control of the vibration of the rotor is provided by an active magnetic actuator(AMA).The iterative gain of the MILC algorithm here presented has a self-adjustment based on the magnitude of the vibration.Notch filters are adopted to extract the synchronous(1×Ω)and twice rotational frequency(2×Ω)components of the rotor vibration.Both the notch frequency of the filter and the size of feedforward storage used during the experiment have a real-time adaptation to the rotational speed.The method proposed in this work can provide effective suppression of the vibration of the rotor in case of sudden changes or fluctuations of the rotor speed.Simulations and experiments using the MILC algorithm proposed here are carried out and give evidence to the feasibility and robustness of the technique proposed.
基金Fund of University of South China (201RGC013 and 200XQD052)。
文摘The recycling of spent lithium-ion batteries(LIBs) is crucial for environmental protection and resource sustainability.However,the economic recovery of spent LIBs remains challenging due to low Li recovery efficiency and the need for multiple separation operations.Here,we propose a process involving mixed HCl-H_(2)SO_(4) leaching-spray pyrolysis for recycling spent ternary LIBs,achieving both selective Li recovery and the preparation of a ternary oxide precursor.Specifically,the process transforms spent ternary cathode(LiNi_(x)Co_yMn_(2)O_(2),NCM) powder into Li_(2)SO_(4) solution and ternary oxide,which can be directly used for synthesizing battery-grade Li_(2)CO_(3) and NCM cathode,respectively.Notably,SO_(4)^(2-) selectively precipitates with Li^(+) to form thermostable Li_(2)SO_(4) during the spray pyrolysis,which substantially improves the Li recovery efficiency by inhibiting Li evaporation and intercalation.Besides,SO_(2) emissions are avoided by controlling the molar ratio of Li^(+)/SO_(4)^(2-)(≥2:1),The mechanism of the preferential formation of Li_(2)SO_(4) is interpreted from its reverse solubility variation with temperature.During the recycling of spent NCM811,92% of Li is selectively recovered,and the regenerated NCM811 exhibits excellent cycling stability with a capacity retention of 81.7% after 300 cycles at 1 C.This work offers a simple and robust process for the recycling of spent NCM cathodes.
基金the National Natural Science Foundation of China(12174015)the Natural Science Foundation of Beijing,China(2212003)+1 种基金the China National Petroleum Corporation Innovation Found(2021DQ02-1004)the National Natural Science Foundation of China(12102053)。
文摘Constructing robust surface and bulk structure is the prerequisite for realizing high performance high voltage LiCoO_(2)(LCO).Herein,we manage to synthesize a surface Mg-doping and bulk Al-doping coreshell structured LCO,which demonstrates excellent cycling performance.Half-cell shows 94.2%capacity retention after 100 cycles at 3.0-4.6 V(vs.Li/Li^(+))cycling,and no capacity decay after 300 cycles for fullcell test(3.0-4.55 V).Based on comprehensive microanalysis and theoretical calculations,the degradation mechanisms and doping effects are systematically revealed.For the undoped LCO,high voltage cycling induces severe interfacial and bulk degradations,where cracks,stripe defects,fatigue H2 phase,and spinel phase are identified in grain bulk.For the doped LCO,Mg-doped surface shell can suppress the interfacial degradations,which not only stabilizes the surface structure by forming a thin rock-salt layer but also significantly improves the electronic conductivity,thus enabling superior rate performance.Bulk Al-doping can suppress the lattice"breathing"effect and the detrimental H3 to H1-3 phase transition,which minimizes the internal strain and defects growth,maintaining the layered structure after prolonged cycling.Combining theoretical calculations,this work deepens our understanding of the doping effects of Mg and Al,which is valuable in guiding the future material design of high voltage LCO.
基金supported by the Inner Mongolia R&D Program Plan(2021ZD0042,2021EEDSCXSFQZD006)the National Natural Science Foundation of China(21902123)the Natural Science Basic Research Program of Shaanxi(2023-JC-ZD-22)。
文摘Designing efficient and long-lasting non-metal electrocatalysts is an urgent task for addressing the issue of kinetic hysteresis in electrochemical oxidation reactions.The bimetallic hydroxides,catalyzing the oxygen evolution reaction(OER),have significant research potential because hydroxide reconstruction to generate an active phase is a remarkable advantage.Herein,the complete reconstruction of ultrathin CoNi(OH)_(2) nanosheets was achieved by embedding Ag nanoparticles into the hydroxide to induce a spontaneous redox reaction(SRR),forming heterojunction Ag@CoNi(OH)_(2) for bifunctional hydrolysis.Theoretical calculations and in situ Raman and ex situ characterizations revealed that the inductive effect of the Ag cation redistributed the charge to promote phase transformation to highly activate Ag-modified hydroxides.The Co-Ni dual sites in Co/NiOOH serve as novel active sites for optimizing the intermediates,thereby weakening the barrier formed by OOH^*.Ag@CoNi(OH)_(2) required a potential of 1.55 V to drive water splitting at a current density of 10 mA cm^(-2),with nearly 98.6% Faraday efficiency.Through ion induction and triggering of electron regulation in the OER via the synergistic action of the heterogeneous interface and surface reconstruction,this strategic design can overcome the limited capacity of bimetallic hydroxides and bridge the gap between the basic theory and industrialization of water decomposition.
基金This research was supported by the Twinning service plan of the Zhejiang Provincial Team Science and the Science and Technology Develpoment project of Hangzhou(202003A02).
文摘Background Fatty liver hemorrhagic syndrome(FLHS),a fatty liver disease in laying hens,poses a grave threat to the layer industry,stemming from its ability to trigger an alarming plummet in egg production and usher in acute mortality among laying hens.Increasing evidence suggests that the onset and progression of fatty liver was closely related to mitochondria dysfunction.Sodium butyrate was demonstrated to modulate hepatic lipid metabolism,alle-viate oxidative stress and improve mitochondrial dysfunction in vitro and mice models.Nevertheless,there is limited existing research on coated sodium butyrate(CSB)to prevent FLHS in laying hens,and whether and how CSB exerts the anti-FLHS effect still needs to be explored.In this experiment,the FLHS model was induced by administering a high-energy low-protein(HELP)diet in laying hens.The objective was to investigate the effects of CSB on alleviating FLHS with a focus on the role of CSB in modulating mitochondrial function.Methods A total of 288 healthy 28-week-old Huafeng laying hens were arbitrarily allocated into 4 groups with 6 replicates each,namely,the CON group(normal diet),HELP group(HELP diet),CH500 group(500 mg/kg CSB added to HELP diet)and CH750 group(750 mg/kg CSB added to HELP diet).The duration of the trial encompassed a period of 10 weeks.Results The result revealed that CSB ameliorated the HELP-induced FLHS by improving hepatic steatosis and patho-logical damage,reducing the gene levels of fatty acid synthesis,and promoting the mRNA levels of key enzymes of fatty acid catabolism.CSB reduced oxidative stress induced by the HELP diet,upregulated the activity of GSH-Px and SOD,and decreased the content of MDA and ROS.CSB also mitigated the HELP diet-induced inflammatory response by blocking TNF-α,IL-1β,and F4/80.In addition,dietary CSB supplementation attenuated HELP-induced activation of the mitochondrial unfolded protein response(UPRmt),mitochondrial damage,and decline of ATPase activity.HELP diet decreased the autophagosome formation,and downregulated LC3B but upregulated p62 protein expression,which CSB administration reversed.CSB reduced HELP-induced apoptosis,as indicated by decreases in the Bax/Bcl-2,Caspase-9,Caspase-3,and Cyt C expression levels.Conclusions Dietary CSB could ameliorate HELP diet-induced hepatic dysfunction via modulating mitochondrial dynamics,autophagy,and apoptosis in laying hens.Consequently,CSB,as a feed additive,exhibited the capacity to prevent FLHS by modulating autophagy and lipid metabolism.
基金y the National Natural Science Foundation of China(Grant No.32102466)the Major Scientific Innovation Project of Shandong Province(Grant No.2022CXGC020708).
文摘Atmospheric CO_(2)concentration is elevated globally,which has“CO_(2)fertilization effects”and potentially improves plant photosynthesis,yield,and productivity.Despite the beneficial effect of CO_(2)fertilization being modulated by vapor pressure deficit(VPD),the underlying mechanism is highly uncertain.In the present study,the potential roles of hormones in determining CO_(2)fertilization effects under contrasting high and low VPD conditions were investigated by integrated physiological and transcriptomic analyses.Beneficial CO_(2)fertilization effects were offset under high VPD conditions and were constrained by plant water stress and photosynthetic CO_(2)utilization.High VPD induced a large passive water driving force,which disrupted the water balance and consequently caused plant water deficit.Leaf water potential,turgor pressure,and hydraulic conductance declined under high VPD stress.The physiological evidence combined with transcriptomic analyses demonstrated that abscisic acid(ABA)and jasmonic acid(JA)potentially acted as drought-signaling molecules in response to high VPD stress.Increased foliar ABA and JA content triggered stomatal closure to prevent excessive water loss under high VPD stress,which simultaneously increased the diffusion resistance for CO_(2)uptake from atmosphere to leaf intercellular space.High VPD also significantly increased mesophyll resistance for CO_(2)transport from stomatal cavity to fixation site inside chloroplast.The chloroplast“sink”CO_(2)availability was constrained by stomatal and mesophyll resistance under high VPD stress,despite the atmospheric“source”CO_(2)concentration being elevated.Thus,ABA-and JA-mediated drought-resistant mechanisms potentially modified the beneficial effect of CO_(2)fertilization on photosynthesis,plant growth,and yield productivity.This study provides valuable information for improving the utilization efficiency of CO_(2)fertilization and a better understanding of the physiological processes.
基金supported by the National Key Research and Development Program under Grant 2022YFB3303702the Key Program of National Natural Science Foundation of China under Grant 61931001+1 种基金supported by the National Natural Science Foundation of China under Grant No.62203368the Natural Science Foundation of Sichuan Province under Grant No.2023NSFSC1440。
文摘This paper investigates the data collection in an unmanned aerial vehicle(UAV)-aided Internet of Things(IoT) network, where a UAV is dispatched to collect data from ground sensors in a practical and accurate probabilistic line-of-sight(LoS) channel. Especially, access points(APs) are introduced to collect data from some sensors in the unlicensed band to improve data collection efficiency. We formulate a mixed-integer non-convex optimization problem to minimize the UAV flight time by jointly designing the UAV 3D trajectory and sensors’ scheduling, while ensuring the required amount of data can be collected under the limited UAV energy. To solve this nonconvex problem, we recast the objective problem into a tractable form. Then, the problem is further divided into several sub-problems to solve iteratively, and the successive convex approximation(SCA) scheme is applied to solve each non-convex subproblem. Finally,the bisection search is adopted to speed up the searching for the minimum UAV flight time. Simulation results verify that the UAV flight time can be shortened by the proposed method effectively.
文摘Liver cancer,one of the most common malignancies worldwide,ranks sixth in incidence and third in mortality.Liver cancer treatment options are diverse,inclu-ding surgical resection,liver transplantation,percutaneous ablation,transarterial chemoembolization,radiotherapy,chemotherapy,targeted therapy,immuno-therapy,and traditional Chinese medicine(TCM).A multidisciplinary team(MDT)is essential to customize treatment plans based on tumor staging,liver function,and performance status(PS),ensuring individualized patient care.Treatment decisions require a MDT to tailor strategies based on tumor staging,liver function,and PS,ensuring personalized care.The approval of new first-line and second-line drugs and the establishment of standard treatments based on immune checkpoint inhibitors have significantly expanded treatment options for advanced liver cancer,improving overall prognosis.However,many patients do not respond effectively to these treatments and ultimately succumb to the disease.Modern oncology treatments,while extending patient survival,often come with severe side effects,resistance,and damage to the body,negatively impacting quality of life.Huang et al's study published at World Journal of Gastroenterology rigorously validates the anticancer properties of Calculus bovis,enhancing our understanding of TCM and contributing to new liver cancer treatment strategies.For over 5000 years,TCM has been used in East Asian countries like China to treat various diseases,including liver conditions.Analysis of real-world clinical data suggests that for patients with advanced-stage tumors lacking effective treatments,integrated TCM therapies could provide significant breakthroughs.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.61975072 and 12174173)the Natural Science Foundation of Fujian Province,China (Grant Nos.2022H0023,2022J02047,ZZ2023J20,and 2022G02006)。
文摘Real-time,contact-free temperature monitoring of low to medium range(30℃-150℃)has been extensively used in industry and agriculture,which is usually realized by costly infrared temperature detection methods.This paper proposes an alternative approach of extracting temperature information in real time from the visible light images of the monitoring target using a convolutional neural network(CNN).A mean-square error of<1.119℃was reached in the temperature measurements of low to medium range using the CNN and the visible light images.Imaging angle and imaging distance do not affect the temperature detection using visible optical images by the CNN.Moreover,the CNN has a certain illuminance generalization ability capable of detection temperature information from the images which were collected under different illuminance and were not used for training.Compared to the conventional machine learning algorithms mentioned in the recent literatures,this real-time,contact-free temperature measurement approach that does not require any further image processing operations facilitates temperature monitoring applications in the industrial and civil fields.
基金supported by the Natural Science Foundation of China(12271134)the Shanxi Scholarship Council of China(2020–089)the Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province(20200019).
文摘In this paper,by characterizing Carleson measures,we investigate a class of bounded Toeplitz operator between weighted Bergman spaces with Békolléweights over the half-plane for all index choices.
基金supported by National Key Research and Development Program of China(No.2021YFB3400800)National Natural Science Foundation of China(Grant No.52271136,51901177)Natural Science Foundation of Shaanxi Province(No.2021JC-06,2019TD-020).
文摘Grain boundaries(GBs)play a crucial role on the structural stability and mechanical properties of Cu and its alloys.In this work,molecular dynamics(MD)simulations are employed to study the effects of Fe solutes on the formation energy,excess volume,dislocations and melting behaviors of GBs in CuFe alloys.It is illustrated that Fe solute affects the structural stability of Cu GBs substantially,the formation energy of GBs is reduced,but the thickness and melting point of GBs are increased,that is,the structural stability of Cu GBs is significantly improved owing to the Fe solutes.A strong scaling law exists between the formation energy,excess volume,thickness and melting point of GBs.Therefore,Fe solid solute plays an important role in the characteristics of GBs in bi-crystal Cu.
基金funded by the National Natural Science Foundation of China(Grant No.82073518).
文摘Epithelial-mesenchymal transition(EMT)is a vital pathological feature of silica-induced pulmonary fibrosis.However,whether circRNA is involved in the process remains unclear.The present study aimed to investigate the role of circPVT1 in the silica-induced EMT and the underlying mechanisms.We found that an elevated expression of circPVT1 promoted EMT and enhanced the migratory capacity of silica-treated epithelial cells.The isolation of cytoplasmic and nuclear separation assay showed that circPVT1 was predominantly expressed in the cytoplasm.RNA immunoprecipitation assay and RNA pull-down experiment indicated that cytoplasmic-localized circPVT1 was capable of binding to miR-497-5p.Furthermore,we found that miR-497-5p attenuated the silica-induced EMT process by targeting transcription factor 3(TCF3),an E-cadherin transcriptional repressor,in the silica-treated epithelial cells.Collectively,these results reveal a novel role of the circPVT1/miR-497-5p/TCF3 axis in the silica-induced EMT process in lung epithelial cells.Once validated,this finding may provide a potential theoretical basis for the development of interventions and treatments for pulmonary fibrosis.
基金the National Natural Science Foundation of China(61922063,62273255,62150026)in part by the Shanghai International Science and Technology Cooperation Project(21550760900,22510712000)+1 种基金the Shanghai Municipal Science and Technology Major Project(2021SHZDZX0100)the Fundamental Research Funds for the Central Universities。
文摘Dear Editor,In this letter,the multi-objective optimal control problem of nonlinear discrete-time systems is investigated.A data-driven policy gradient algorithm is proposed in which the action-state value function is used to evaluate the policy.In the policy improvement process,the policy gradient based method is employed.
基金the National Natural Science Foundation of China(12172308,52072319)the Independent Project of State Key Laboratory of Rail Transit Vehicle System(2023TPL-T06).
文摘A pantograph serves as a vital device for the collection of electricity in trains.However,its aerodynamic resistance can limit the train’s running speed.As installing fairings around the pantograph is known to effectively reduce the resistance,in this study,different fairing lengths are considered and the related aerodynamic performances of pantograph are assessed.In particular,this is accomplished through numerical simulations based on the k-ωShear Stress Transport(SST)two-equation turbulence model.The results indicate that the fairing diminishes the direct impact of high-speed airflow on the pantograph,thereby reducing its aerodynamic resistance.However,it also induces interferences in the flow field around the train,leading to variations in the aerodynamic resistance and lift of train components.It is shown that a maximum reduction of 56.52%in pantograph aerodynamic resistance and a peak decrease of 3.38%in total train aerodynamic resistance can be achieved.