In this study,we investigate the effect of the exposure dose on the mechanical property of the photoresins generated with acrylate self-polymerization and thiol-ene polymerization.The results indicate that the mechani...In this study,we investigate the effect of the exposure dose on the mechanical property of the photoresins generated with acrylate self-polymerization and thiol-ene polymerization.The results indicate that the mechanical performance of the thiol-ene photoresin is highly depended on the exposure dose during the solidification process.With 350-fold exposure dose change,the stiffness of the thiol-ene photoresin reached more that 700-fold change compare to 14-fold of the acrylate photoresin.We developed a TPL photoresist based on our results and show the capability to fabricate microstrucutres with high resolution and variable mechanical performances using this method.展开更多
基金the National Natural Science Foundation of China(Nos.22002015 and 52033002)the Fundamental Research Funding from Jiangsu Province(No.BK20211560)the Fundamental Research Funds for the Central Universities(No.2242018R20011).
文摘In this study,we investigate the effect of the exposure dose on the mechanical property of the photoresins generated with acrylate self-polymerization and thiol-ene polymerization.The results indicate that the mechanical performance of the thiol-ene photoresin is highly depended on the exposure dose during the solidification process.With 350-fold exposure dose change,the stiffness of the thiol-ene photoresin reached more that 700-fold change compare to 14-fold of the acrylate photoresin.We developed a TPL photoresist based on our results and show the capability to fabricate microstrucutres with high resolution and variable mechanical performances using this method.