Dew has been recognized for its ecological significance and has also been identified as an additional source of water in arid zones. We used factorial control experiment, under dew presence in the field, to explore ph...Dew has been recognized for its ecological significance and has also been identified as an additional source of water in arid zones. We used factorial control experiment, under dew presence in the field, to explore photosynthetic performance, water status and growth response of desert annual herbage. Bassia dasyphylla seedlings were grown in contrasting dew treatments (dew-absent and dew-present) and different watering regimes (normal and deficient). The effects of dew on the water status and photosynthetic performance of Bassia dasyphylla grown in a desert area of the Hexi Corridor in Northwestern China, were evaluated. The results indicated the pres- ence of dew significantly increased relative water content (RWC) of shoots and total biomass of plants in both water regimes, and enhanced the diurnal shoot water potential and stomatal conductance in the early morning, as well as photosynthetic rate, which reached its maximum only in the water-stressed regime. The presence of dew increased aboveground growth of plants and photosynthate accumulation in leaves, but decreased the root-to-shoot ratio in both water regimes. Dew may have an important role in improving plant water status and ameliorating the adverse effects of plants exposed to prolonged drought.展开更多
This paper presents various deformation-monitoring technologies employed to monitor the frost heave and thaw settlement of two mounds along the Qinghai–Tibet Engineering Corridor(QTEC), China. The QTEC is known as a ...This paper presents various deformation-monitoring technologies employed to monitor the frost heave and thaw settlement of two mounds along the Qinghai–Tibet Engineering Corridor(QTEC), China. The QTEC is known as a critical infrastructure and passage connecting inland China and the Qinghai–Tibet Plateau(QTP). Three technologies—global navigation satellite system(GNSS), terrestrial laser scanning(TLS), and unmanned aerial vehicle(UAV)—were used to estimate the freeze/thaw–induced 3D surface deformation of two frost mounds. Our results showed that (1) the two frost mounds exhibited mainly thaw settlement in thawing periods and frost heave in the freezing period, but frost heave dominated after repeated freeze–thaw cycles;(2) different zones of the mounds showed different deformation characteristics;(3) active-layer thickness(ALT) and elevation changes were highly correlated during thaw periods;(4) integrated 3D-measurement technologies can achieve a better understanding and assessment of hazards in the permafrost area.展开更多
Ductile transient liquid phase(TLP)bonding joints reinforced by multiple precipitates were produced using novel pre-sintered coatings and Au-Si fillers;therefore,the highest strength of NiTi/sapphire joints brazed at ...Ductile transient liquid phase(TLP)bonding joints reinforced by multiple precipitates were produced using novel pre-sintered coatings and Au-Si fillers;therefore,the highest strength of NiTi/sapphire joints brazed at 460℃ for 30 min reached 72 MPa.The pre-sintering process improved the surface-active of sapphire by forming metastable Ti_(3)O and non-stoichiometric Al_(2)O_(3).The typical brazing seam consisted of O-rich compounds,TiSi_(2),and Ti-Ni-Si,wherein the O-rich phase featured different crystallinity depending on the oxygen content.The sapphire/seam interface was either a nanoscale diffusion region or a Si-rich amorphous layer.The breakdown of the Stokes-Einstein relation(SER)occurred,and the deviation from SER increased with a higher cooling rate.The influence of coating thickness was reflected in(i)the supercooling related to the viscosity and fractional exponent of liquids and(ii)the microstructural change of the joint related to the driving force for crystal growth.This work presented a new strategy for joining ceramics to metals at lower temperatures but using the joint at higher temperatures;furthermore,gave an insight into the microstructure evolution and kinetics behaviors based on supercooling in a transient liquid phase bonding joint.展开更多
基金financially supported by the National Natural Sciences Foundation of China (30771767 and 40601016)
文摘Dew has been recognized for its ecological significance and has also been identified as an additional source of water in arid zones. We used factorial control experiment, under dew presence in the field, to explore photosynthetic performance, water status and growth response of desert annual herbage. Bassia dasyphylla seedlings were grown in contrasting dew treatments (dew-absent and dew-present) and different watering regimes (normal and deficient). The effects of dew on the water status and photosynthetic performance of Bassia dasyphylla grown in a desert area of the Hexi Corridor in Northwestern China, were evaluated. The results indicated the pres- ence of dew significantly increased relative water content (RWC) of shoots and total biomass of plants in both water regimes, and enhanced the diurnal shoot water potential and stomatal conductance in the early morning, as well as photosynthetic rate, which reached its maximum only in the water-stressed regime. The presence of dew increased aboveground growth of plants and photosynthate accumulation in leaves, but decreased the root-to-shoot ratio in both water regimes. Dew may have an important role in improving plant water status and ameliorating the adverse effects of plants exposed to prolonged drought.
基金supported by the National Natural Science Foundation of China (41301508, 41630636)
文摘This paper presents various deformation-monitoring technologies employed to monitor the frost heave and thaw settlement of two mounds along the Qinghai–Tibet Engineering Corridor(QTEC), China. The QTEC is known as a critical infrastructure and passage connecting inland China and the Qinghai–Tibet Plateau(QTP). Three technologies—global navigation satellite system(GNSS), terrestrial laser scanning(TLS), and unmanned aerial vehicle(UAV)—were used to estimate the freeze/thaw–induced 3D surface deformation of two frost mounds. Our results showed that (1) the two frost mounds exhibited mainly thaw settlement in thawing periods and frost heave in the freezing period, but frost heave dominated after repeated freeze–thaw cycles;(2) different zones of the mounds showed different deformation characteristics;(3) active-layer thickness(ALT) and elevation changes were highly correlated during thaw periods;(4) integrated 3D-measurement technologies can achieve a better understanding and assessment of hazards in the permafrost area.
基金supported by the National MCF Energy R&D Program(No.2019YFE03100100)National Natural Science Foundation of China(NSFC,Nos.51975150,51974101,U21A20128,52175302,and 52105332)+2 种基金National Strategic International Science and Technology Innovation Cooperation Key Project(No.2020YFE0205304)Natural Science Foundation of Heilongjiang Province,China(Nos.JQ2020E003 and LH2020E037)Applied Basic Research Key Project of Yunnan(No.202002AB080001-1).
文摘Ductile transient liquid phase(TLP)bonding joints reinforced by multiple precipitates were produced using novel pre-sintered coatings and Au-Si fillers;therefore,the highest strength of NiTi/sapphire joints brazed at 460℃ for 30 min reached 72 MPa.The pre-sintering process improved the surface-active of sapphire by forming metastable Ti_(3)O and non-stoichiometric Al_(2)O_(3).The typical brazing seam consisted of O-rich compounds,TiSi_(2),and Ti-Ni-Si,wherein the O-rich phase featured different crystallinity depending on the oxygen content.The sapphire/seam interface was either a nanoscale diffusion region or a Si-rich amorphous layer.The breakdown of the Stokes-Einstein relation(SER)occurred,and the deviation from SER increased with a higher cooling rate.The influence of coating thickness was reflected in(i)the supercooling related to the viscosity and fractional exponent of liquids and(ii)the microstructural change of the joint related to the driving force for crystal growth.This work presented a new strategy for joining ceramics to metals at lower temperatures but using the joint at higher temperatures;furthermore,gave an insight into the microstructure evolution and kinetics behaviors based on supercooling in a transient liquid phase bonding joint.