For random noise suppression of seismic data, we present a non-local Bayes (NL- Bayes) filtering algorithm. The NL-Bayes algorithm uses the Gaussian model instead of the weighted average of all similar patches in th...For random noise suppression of seismic data, we present a non-local Bayes (NL- Bayes) filtering algorithm. The NL-Bayes algorithm uses the Gaussian model instead of the weighted average of all similar patches in the NL-means algorithm to reduce the fuzzy of structural details, thereby improving the denoising performance. In the denoising process of seismic data, the size and the number of patches in the Gaussian model are adaptively calculated according to the standard deviation of noise. The NL-Bayes algorithm requires two iterations to complete seismic data denoising, but the second iteration makes use of denoised seismic data from the first iteration to calculate the better mean and covariance of the patch Gaussian model for improving the similarity of patches and achieving the purpose of denoising. Tests with synthetic and real data sets demonstrate that the NL-Bayes algorithm can effectively improve the SNR and preserve the fidelity of seismic data.展开更多
Prediction filtering is one of the most commonly used random noise attenuation methods in the industry;however,it has two drawbacks.First,it assumes that the seismic signals are piecewise stationary and linear.However...Prediction filtering is one of the most commonly used random noise attenuation methods in the industry;however,it has two drawbacks.First,it assumes that the seismic signals are piecewise stationary and linear.However,the seismic signal exhibits nonstationary due to the complexity of the underground structure.Second,the method predicts noise from seismic data by convolving with a prediction error filter(PEF),which applies inconsistent noise models before and after denoising.Therefore,the assumptions and model inconsistencies weaken conventional prediction filtering's performance in noise attenuation and signal preservation.In this paper,we propose a nonstationary signal inversion based on shaping regularization for random noise attenuation.The main idea of the method is to use the nonstationary prediction operator(NPO)to describe the complex structure and obtain seismic signals using nonstationary signal inversion instead of convolution.Different from the convolutional predicting filtering,the proposed method uses NPO as the regularization constraint to directly invert the eff ective signal from the noisy seismic data.The NPO varies in time and space,enabling the inversion system to describe complex(nonstationary and nonlinear)underground geological structures in detail.Processing synthetic and field data results demonstrate that the method eff ectively suppresses random noise and preserves seismic refl ection signals for nonstationary seismic data.展开更多
基金financially sponsored by Research Institute of Petroleum Exploration&Development(PETROCHINA)Scientific Research And Technology Development Projects(No.2016ycq02)China National Petroleum Corporation Science&Technology Development Projects(No.2015B-3712)Ministry of National Science&Technique(No.2016ZX05007-006)
文摘For random noise suppression of seismic data, we present a non-local Bayes (NL- Bayes) filtering algorithm. The NL-Bayes algorithm uses the Gaussian model instead of the weighted average of all similar patches in the NL-means algorithm to reduce the fuzzy of structural details, thereby improving the denoising performance. In the denoising process of seismic data, the size and the number of patches in the Gaussian model are adaptively calculated according to the standard deviation of noise. The NL-Bayes algorithm requires two iterations to complete seismic data denoising, but the second iteration makes use of denoised seismic data from the first iteration to calculate the better mean and covariance of the patch Gaussian model for improving the similarity of patches and achieving the purpose of denoising. Tests with synthetic and real data sets demonstrate that the NL-Bayes algorithm can effectively improve the SNR and preserve the fidelity of seismic data.
基金This research was financially supported by the CNPC Science Research and Technology Development Project(No.2019A-3312),the CNPC major promotion project(No.2018D-0813),the National Natural Science Foundation of China(No.41874141)and the Project,“New Technology and Software Development for Comprehensive Identifi cation an Evalunation of Cracks”of the Research Institute of Petroleum Exploration&Development-Northwest of CNPC(No.2015B-3712).We also are grateful to our reviewers,Prof.Li Hui,Wang Yanchun,and Ma Jinfeng,for their feedback that assisted in substantially improving the presentation of this paper.
文摘Prediction filtering is one of the most commonly used random noise attenuation methods in the industry;however,it has two drawbacks.First,it assumes that the seismic signals are piecewise stationary and linear.However,the seismic signal exhibits nonstationary due to the complexity of the underground structure.Second,the method predicts noise from seismic data by convolving with a prediction error filter(PEF),which applies inconsistent noise models before and after denoising.Therefore,the assumptions and model inconsistencies weaken conventional prediction filtering's performance in noise attenuation and signal preservation.In this paper,we propose a nonstationary signal inversion based on shaping regularization for random noise attenuation.The main idea of the method is to use the nonstationary prediction operator(NPO)to describe the complex structure and obtain seismic signals using nonstationary signal inversion instead of convolution.Different from the convolutional predicting filtering,the proposed method uses NPO as the regularization constraint to directly invert the eff ective signal from the noisy seismic data.The NPO varies in time and space,enabling the inversion system to describe complex(nonstationary and nonlinear)underground geological structures in detail.Processing synthetic and field data results demonstrate that the method eff ectively suppresses random noise and preserves seismic refl ection signals for nonstationary seismic data.