期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Recent Advances of Transition Metal Basic Salts for Electrocatalytic Oxygen Evolution Reaction and Overall Water Electrolysis 被引量:2
1
作者 Bingrong Guo yani ding +4 位作者 Haohao Huo Xinxin Wen Xiaoqian Ren Ping Xu Siwei Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第4期238-260,共23页
Electrocatalytic oxygen evolution reaction(OER)has been recognized as the bottleneck of overall water splitting,which is a promising approach for sustainable production of H_(2).Transition metal(TM)hydroxides are the ... Electrocatalytic oxygen evolution reaction(OER)has been recognized as the bottleneck of overall water splitting,which is a promising approach for sustainable production of H_(2).Transition metal(TM)hydroxides are the most conventional and classical non-noble metal-based electrocatalysts for OER,while TM basic salts[M^(2+)(OH)_(2-x)(A_(m^(-))_(x/m),A=CO_(3)^(2−),NO_(3)^(−),F^(−),Cl^(−)]consisting of OH−and another anion have drawn extensive research interest due to its higher catalytic activity in the past decade.In this review,we summarize the recent advances of TM basic salts and their application in OER and further overall water splitting.We categorize TM basic salt-based OER pre-catalysts into four types(CO_(3)^(2−),NO_(3)^(−),F^(−),Cl^(−)according to the anion,which is a key factor for their outstanding performance towards OER.We highlight experimental and theoretical methods for understanding the structure evolution during OER and the effect of anion on catalytic performance.To develop bifunctional TM basic salts as catalyst for the practical electrolysis application,we also review the present strategies for enhancing its hydrogen evolution reaction activity and thereby improving its overall water splitting performance.Finally,we conclude this review with a summary and perspective about the remaining challenges and future opportunities of TM basic salts as catalysts for water electrolysis. 展开更多
关键词 Transition metal basic salts ELECTROCATALYTIC Oxygen evolution reaction(OER) Overall water electrolysis
下载PDF
Simultaneous utilization of electro-generated O_(2)and H_(2)for H_(2)O_(2)production:An upgrade of the Pd-catalytic electro-Fenton process for pollutants degradation
2
作者 Wei Zhou Xiaoxiao Meng +5 位作者 Liang Xie Junfeng Li yani ding Yanlin Su Jihui Gao Guangbo Zhao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第4期363-368,共6页
The Electro-Fenton(EF)process is one of the promising advanced oxidation processes(AOPs)for environmental remediation.The H_(2)O_(2) yield of EF process largely determines its performance on organic pollutants degrada... The Electro-Fenton(EF)process is one of the promising advanced oxidation processes(AOPs)for environmental remediation.The H_(2)O_(2) yield of EF process largely determines its performance on organic pollutants degradation.Conventional Pd-catalytic EF process generates H_(2)O_(2) via the combination reaction of anodic O_(2) and cathodic H;.However,the relatively expensive catalyst limits its application.Herein,a hybrid Pd/activated carbon(Pd/AC)-stainless steel mesh(SS)cathode(PACSS)was proposed,which enables more efficie nt H_(2)O_(2)generation.It utilizes AC,the support of Pd catalyst,as part of cathode for H_(2)O_(2) generation via 2-electron anodic O_(2) reduction,and SS serve as a current distributor.Moreover,H_(2)O_(2) could be catalytically decomposed upon AC to generate highly reactive·OH,which avoids the use of Fe;.Compared with conventional Pd catalyst,H_(2)O_(2) concentration obtained by PACSS cathode is248.2%higher,the O_(2)utilization efficiency was also increased from 3.2%to 10.8%.Within 50 min,26.3%,72.5%,and 94.0%H_(2)O_(2) was decomposed by Pd,AC,and Pd/AC.Fluorescence detection results implied that Pd/AC is effective upon H_(2)O_(2) activation for·OH generation.Finally,iron-free EF process enabled by PACSS cathode was examined to be effective for reactive blue 19(RB19)degradation.After continuous running for 10 cycles(500 min),the PACSS cathode was still stable for H_(2)O_(2)generation,H_(2)O_(2)activation,and RB19 degradation,showing its potential application for organic pollutants degradation without increase in the running cost. 展开更多
关键词 ELECTRO-FENTON Hydrogen peroxide Hydroxyl radicals Oxygen reduction reaction Organic pollutants
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部