Sugar plays an important role in apple fruit development,appearance and quality as well as contributing to a plant’s water stress response.Trehalose and the trehalose biosynthetic metabolic pathways are part of the s...Sugar plays an important role in apple fruit development,appearance and quality as well as contributing to a plant’s water stress response.Trehalose and the trehalose biosynthetic metabolic pathways are part of the sugar signaling system in plants,which are important regulator of water stress response in apple.The effect of water stress treatments applied to apple trees and the corresponding effects of ABA on developmental fruit quality were examined for indicators of fruit quality during fruit development.The results indicated that the severe water stress treatment(W2)occurring after the last stage of fruit cell division caused a decrease in the color and size of fruit.The moderate water stress(W1)occurring after the last stage of fruit cell enlargement(S2)caused an increase in the content of fructose and sorbitol while the apple fruit shape was not affected.These changes in sugar are related to the activity of sugar metabolic enzymes.While the enzymatic activity of vacuolar acid invertase(vAINV)was higher,that of sucrose-phosphate synthase(SPS)was lower in water stress treated fruit throughout the developmental period.This indicates that enhanced sucrose degradation and reduced sucrose synthesis leads to an overall reduced sucrose content during times of drought.Thus,water stress reduced sucrose content.Whereas the content of endogenous trehalose and ABA were the highest in water stress treated fruit.A moderate water stress(W1)imposed on apple trees via water restriction(60%–65%of field capacity)after the fruit cell enlargement phase of fruit development yielded sweeter fruit of higher economic value.展开更多
At a sampling rate of 100 samples per second,the YRY-4 four-gauge borehole strainmeters(FGBS) are capable of recording transient strains caused by seismic waves such as P and S waves or strain seismograms. At such a...At a sampling rate of 100 samples per second,the YRY-4 four-gauge borehole strainmeters(FGBS) are capable of recording transient strains caused by seismic waves such as P and S waves or strain seismograms. At such a high sampling rate, data from the YRY-4 strainmeters demonstrate fairly satisfactory self-consistency. The strain tensor seismograms demonstrate the senses of motion of P waves, that is, the type of seismic wave travels in the direction of the maximum normal strain change. The observed strain patterns of S waves significantly differ from those of P waves and should contain information about the source mechanism. Spectrum analysis shows that the strain seismograms are consistent with conventional broadband seismograms from the same site.展开更多
Diabetic foot ulcers are one of the most severe complications of diabetes that have imposed great financial and psychological burdens on diabetic patients.A Nocardia rubra cell wall skeleton(Nr-CWS)can be externally a...Diabetic foot ulcers are one of the most severe complications of diabetes that have imposed great financial and psychological burdens on diabetic patients.A Nocardia rubra cell wall skeleton(Nr-CWS)can be externally applied to accelerate wound healing.However,its clinical application has not yet been reported.Herein,we report two patients with diabetic foot ulcers treated with Nr-CWS.After wound debridement,the wound was covered with a sterile cotton ball infiltrated with an Nr-CWS that was diluted with 2.0 mL of saline.The covers were changed every two days until complete wound healing occurred.The two wounds healed after 3 and 12 weeks,respectively.This article aims to provide a new treatment for diabetic foot ulcers,with the hope that physicians may consider an Nr-CWS as a complementary method for the treatment of chronic wounds.展开更多
Filtration tests were conducted on a granular bed filter with layered drawers filled with corundum particles with sizes between either 1 mm and 1.5 mm or 2 mm and 3 mm or with quartz sand particles with sizes between ...Filtration tests were conducted on a granular bed filter with layered drawers filled with corundum particles with sizes between either 1 mm and 1.5 mm or 2 mm and 3 mm or with quartz sand particles with sizes between 0.125 mm and 1.5 mm.Filtration velocity,filter particle thickness,and filter particle size were all found to influence the filtration efficiency and the pressure drop of both the fixed granular bed and the layered-drawer granular bed.Granular strata with different thickness ratios also strongly influenced the filtration efficiency and pressure drop.For a granular bed with two sizes of filter particles,the coarse granules in the upper layer capture dust with large particle sizes,while the fine granules in the lower layer capture dust with smaller particle sizes that passes through the filter cake and upper layer.Optimal operating conditions were determined at which the filtration efficiency was found to be 99.42%with a bed pressure drop of 320 Pa.展开更多
Semiconducting heterojunctions(HJs),comprised of atomically thin transition metal dichalcogenides(TMDs),have shown great potentials in electronic and optoelectronic applications.Organic/TMD hybrid bilayers hold enhanc...Semiconducting heterojunctions(HJs),comprised of atomically thin transition metal dichalcogenides(TMDs),have shown great potentials in electronic and optoelectronic applications.Organic/TMD hybrid bilayers hold enhanced pumping efficiency of interfacial excitons,tunable electronic structures and optical properties,and other superior advantages to these inorganic HJs.Here,we report a direct probe of the interfacial electronic structures of a crystalline monolayer(ML)perylene-3,4,9,10-tetracarboxylic-dianhydride(PTCDA)/ML-WSe_(2) HJ using scanning tunneling microscopy,photoluminescence,and first-principle calculations.Strong PTCDAAA/Se_(2) interfacial interactions lead to appreciable hybridization of the WSe_(2) conduction band with PTCDA unoccupied states,accompanying with a significant amount of PTCDA-to-WSe_(2) charge transfer(by 0.06 e/PTCDA).A type-ll band alignment was directly determined with a valence band offset of-1.69 eV,and an apparent conduction band offset of-1.57 eV.Moreover,we found that the local stacking geometry at the HJ interface differentiates the hybridized interfacial states.展开更多
Recently,the layered transition metal dichalcogenide 1T′-MoTe2 has generated considerable interest due to their superconducting and non-trivial topological properties.Here,we present a systematic study on 1T′-MoTe2 ...Recently,the layered transition metal dichalcogenide 1T′-MoTe2 has generated considerable interest due to their superconducting and non-trivial topological properties.Here,we present a systematic study on 1T′-MoTe2 single-crystal and exfoliated thin-flakes by means of electrical transport,scanning tunnelling microscope(STM)measurements and band structure calculations.For a bulk sample,it exhibits large magneto-resistance(MR)and Shubnikov–de Hass oscillations inρxx and a series of Hall plateaus inρxy at low temperatures.Meanwhile,the MoTe2 thin films were intensively investigated with thickness dependence.For samples,without encapsulation,an apparent transition from the intrinsic metallic to insulating state is observed by reducing thickness.In such thin films,we also observed a suppression of the MR and weak anti-localization(WAL)effects.We attributed these effects to disorders originated from the extrinsic surface chemical reaction,which is consistent with the density functional theory(DFT)calculations and in-situ STM results.In contrast to samples without encapsulated protection,we discovered an interesting superconducting transition for those samples with hexagonal Boron Nitride(h-BN)film protection.Our results indicate that the metallic or superconducting behavior is its intrinsic state,and the insulating behavior is likely caused by surface oxidation in few layer 1T’-MoTe2 flakes.展开更多
基金supported by the National Key Technology R&D Program(Grant No.2014BAD16B06)the project of the China Agriculture Research System(Grant No.CARS-28)。
文摘Sugar plays an important role in apple fruit development,appearance and quality as well as contributing to a plant’s water stress response.Trehalose and the trehalose biosynthetic metabolic pathways are part of the sugar signaling system in plants,which are important regulator of water stress response in apple.The effect of water stress treatments applied to apple trees and the corresponding effects of ABA on developmental fruit quality were examined for indicators of fruit quality during fruit development.The results indicated that the severe water stress treatment(W2)occurring after the last stage of fruit cell division caused a decrease in the color and size of fruit.The moderate water stress(W1)occurring after the last stage of fruit cell enlargement(S2)caused an increase in the content of fructose and sorbitol while the apple fruit shape was not affected.These changes in sugar are related to the activity of sugar metabolic enzymes.While the enzymatic activity of vacuolar acid invertase(vAINV)was higher,that of sucrose-phosphate synthase(SPS)was lower in water stress treated fruit throughout the developmental period.This indicates that enhanced sucrose degradation and reduced sucrose synthesis leads to an overall reduced sucrose content during times of drought.Thus,water stress reduced sucrose content.Whereas the content of endogenous trehalose and ABA were the highest in water stress treated fruit.A moderate water stress(W1)imposed on apple trees via water restriction(60%–65%of field capacity)after the fruit cell enlargement phase of fruit development yielded sweeter fruit of higher economic value.
基金supported by the Special Fund for Earthquake Research in the Public Interest(No.201108009)
文摘At a sampling rate of 100 samples per second,the YRY-4 four-gauge borehole strainmeters(FGBS) are capable of recording transient strains caused by seismic waves such as P and S waves or strain seismograms. At such a high sampling rate, data from the YRY-4 strainmeters demonstrate fairly satisfactory self-consistency. The strain tensor seismograms demonstrate the senses of motion of P waves, that is, the type of seismic wave travels in the direction of the maximum normal strain change. The observed strain patterns of S waves significantly differ from those of P waves and should contain information about the source mechanism. Spectrum analysis shows that the strain seismograms are consistent with conventional broadband seismograms from the same site.
基金This study was sponsored by the National Natural Science Foundation of China(grant no.82172224).
文摘Diabetic foot ulcers are one of the most severe complications of diabetes that have imposed great financial and psychological burdens on diabetic patients.A Nocardia rubra cell wall skeleton(Nr-CWS)can be externally applied to accelerate wound healing.However,its clinical application has not yet been reported.Herein,we report two patients with diabetic foot ulcers treated with Nr-CWS.After wound debridement,the wound was covered with a sterile cotton ball infiltrated with an Nr-CWS that was diluted with 2.0 mL of saline.The covers were changed every two days until complete wound healing occurred.The two wounds healed after 3 and 12 weeks,respectively.This article aims to provide a new treatment for diabetic foot ulcers,with the hope that physicians may consider an Nr-CWS as a complementary method for the treatment of chronic wounds.
基金This work was funded by the National Key Research and Development Program of China(Fund project No.2018YFB0605901).
文摘Filtration tests were conducted on a granular bed filter with layered drawers filled with corundum particles with sizes between either 1 mm and 1.5 mm or 2 mm and 3 mm or with quartz sand particles with sizes between 0.125 mm and 1.5 mm.Filtration velocity,filter particle thickness,and filter particle size were all found to influence the filtration efficiency and the pressure drop of both the fixed granular bed and the layered-drawer granular bed.Granular strata with different thickness ratios also strongly influenced the filtration efficiency and pressure drop.For a granular bed with two sizes of filter particles,the coarse granules in the upper layer capture dust with large particle sizes,while the fine granules in the lower layer capture dust with smaller particle sizes that passes through the filter cake and upper layer.Optimal operating conditions were determined at which the filtration efficiency was found to be 99.42%with a bed pressure drop of 320 Pa.
基金supported by the National Key R&D Program of China(Nos.2018FYA0305800 and 2018YFA0703700)the National Natural Science Foundation of China(Nos.11774268 and 11974012)+2 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB30000000)support from the Fundamental Research Funds for the Central Universities,Chinathe Research Funds of Renmin University of China(Nos.16XNLQ01 and 19XNQ025)。
文摘Semiconducting heterojunctions(HJs),comprised of atomically thin transition metal dichalcogenides(TMDs),have shown great potentials in electronic and optoelectronic applications.Organic/TMD hybrid bilayers hold enhanced pumping efficiency of interfacial excitons,tunable electronic structures and optical properties,and other superior advantages to these inorganic HJs.Here,we report a direct probe of the interfacial electronic structures of a crystalline monolayer(ML)perylene-3,4,9,10-tetracarboxylic-dianhydride(PTCDA)/ML-WSe_(2) HJ using scanning tunneling microscopy,photoluminescence,and first-principle calculations.Strong PTCDAAA/Se_(2) interfacial interactions lead to appreciable hybridization of the WSe_(2) conduction band with PTCDA unoccupied states,accompanying with a significant amount of PTCDA-to-WSe_(2) charge transfer(by 0.06 e/PTCDA).A type-ll band alignment was directly determined with a valence band offset of-1.69 eV,and an apparent conduction band offset of-1.57 eV.Moreover,we found that the local stacking geometry at the HJ interface differentiates the hybridized interfacial states.
基金The work was supported by the Guangdong Innovative and Entrepreneurial Research Team Program,China(Grant No.2016ZT06D348)the National Natural Science Foundation of China(Grant No.11874193)the Shenzhen Fundamental Subject Research Program,China(Grant No.JCYJ20170817110751776).K.D.W.acknowledges support from the National Natural Science Foundation of China(Grant No.11574128).X.D.acknowledges support from NSF under award DMR-1808491.
文摘Recently,the layered transition metal dichalcogenide 1T′-MoTe2 has generated considerable interest due to their superconducting and non-trivial topological properties.Here,we present a systematic study on 1T′-MoTe2 single-crystal and exfoliated thin-flakes by means of electrical transport,scanning tunnelling microscope(STM)measurements and band structure calculations.For a bulk sample,it exhibits large magneto-resistance(MR)and Shubnikov–de Hass oscillations inρxx and a series of Hall plateaus inρxy at low temperatures.Meanwhile,the MoTe2 thin films were intensively investigated with thickness dependence.For samples,without encapsulation,an apparent transition from the intrinsic metallic to insulating state is observed by reducing thickness.In such thin films,we also observed a suppression of the MR and weak anti-localization(WAL)effects.We attributed these effects to disorders originated from the extrinsic surface chemical reaction,which is consistent with the density functional theory(DFT)calculations and in-situ STM results.In contrast to samples without encapsulated protection,we discovered an interesting superconducting transition for those samples with hexagonal Boron Nitride(h-BN)film protection.Our results indicate that the metallic or superconducting behavior is its intrinsic state,and the insulating behavior is likely caused by surface oxidation in few layer 1T’-MoTe2 flakes.