Most of the existing vector data matching methods use traditional feature geometry attribute features to match, however, many of the similarity indicators are not suitable for cross-scale data, resulting in less accur...Most of the existing vector data matching methods use traditional feature geometry attribute features to match, however, many of the similarity indicators are not suitable for cross-scale data, resulting in less accuracy in identifying objects. In order to solve this problem effectively, a deep learning model for vector road data matching is proposed based on siamese neural network and VGG16 convolutional neural network, and matching experiments are carried out. Experimental results show that the proposed vector road data matching model can achieve an accuracy of more than 90% under certain data support and threshold conditions.展开更多
Green energy storage devices play vital roles in reducing fossil fuel emissions and achieving carbon neutrality by 2050.Growing markets for portable electronics and electric vehicles create tremendous demand for advan...Green energy storage devices play vital roles in reducing fossil fuel emissions and achieving carbon neutrality by 2050.Growing markets for portable electronics and electric vehicles create tremendous demand for advanced lithium-ion batteries(LIBs)with high power and energy density,and novel electrode material with high capacity and energy density is one of the keys to next-generation LIBs.Silicon-based materials,with high specific capacity,abundant natural resources,high-level safety and environmental friendliness,are quite promising alternative anode materials.However,significant volume expansion and redundant side reactions with electrolytes lead to active lithium loss and decreased coulombic efficiency(CE)of silicon-based material,which hinders the commercial application of silicon-based anode.Prelithiation,preembedding extra lithium ions in the electrodes,is a promising approach to replenish the lithium loss during cycling.Recent progress on prelithiation strategies for silicon-based anode,including electrochemical method,chemical method,direct contact method,and active material method,and their practical potentials are reviewed and prospected here.The development of advanced Si-based material and prelithiation technologies is expected to provide promising approaches for the large-scale application of silicon-based materials.展开更多
Resveratrol possesses beneficial biological effects, which include anti-oxidant, anti-inflammatory and anti-carcinogenic properties. Recently, resveratrol has been shown to exhibit neuroprotective effects in models of...Resveratrol possesses beneficial biological effects, which include anti-oxidant, anti-inflammatory and anti-carcinogenic properties. Recently, resveratrol has been shown to exhibit neuroprotective effects in models of Parkinson's disease, cerebral ischemia and Alzheimer's disease. However, its effects on vascular dementia remain unclear. The present study established a rat model of vascular dementia using permanent bilateral common carotid artery occlusion. At 8-12 weeks after model induction, rats were intragastrically administered 25 mg/kg resveratrol daily. Our results found that resveratrol shortened the escape latency and escape distances in the Morris water maze, and pro- longed the time spent percentage and swimming distance percentage in the target quadrant during the probe test, indicating that resveratrol improved learning and memory ability in vascular dementia rats. Further experiments found that resveratrol decreased malonyldialdehyde levels, and increased superoxide dismutase activity and glutathione levels in the hippocampus and cerebral cortex of vascular dementia rats. These results confirmed that the neuroprotective effects of resveratrol on vascular dementia were associated with its anti-oxidant properties.展开更多
Kainic acid can simulate excitatory amino acids in vitro. Neural stem cells, isolated from newborn Wistar rats, were cultured in vitro and exposed to 100 4 000 #M kainic acid for 7 days to induce neuronal cell differe...Kainic acid can simulate excitatory amino acids in vitro. Neural stem cells, isolated from newborn Wistar rats, were cultured in vitro and exposed to 100 4 000 #M kainic acid for 7 days to induce neuronal cell differentiation, causing the number of astrocytes to be significantly increased. Treatment with a combination of 0.5 mg/L gastrodin and kainic acid also caused the number of differentiated neurons to be significantly increased compared with treatment with kainic acid alone Experimental findings suggest that gastrodin reduces the excitability of kainic acid and induces neural stem cell differentiation into neurons.展开更多
We propose an influential set based moving k keyword query processing model, which avoids the shortcoming of safe region-based approaches that the update cost and update frequency cannot be optimized simultaneously. B...We propose an influential set based moving k keyword query processing model, which avoids the shortcoming of safe region-based approaches that the update cost and update frequency cannot be optimized simultaneously. Based on the model, we design a parallel query processing method and a parallel validation method for multicore processing platforms. The time complexity of the algorithms is O((log|D|+p.k)/p.k)?and O(log p.k), respectively, which are all O(1/k) times the time complexity of the state-of-the-art method. The experiment result confirms the superiority of our algorithms over the state-of-the-art method.展开更多
This paper attempts to establish a framework of upgrading mechanism in China's foreign economic opening strate莒y in order to conclude the new connotation of upgrade for China's foreign economic opening,with t...This paper attempts to establish a framework of upgrading mechanism in China's foreign economic opening strate莒y in order to conclude the new connotation of upgrade for China's foreign economic opening,with the basic starting point of ternary marginal extension on extensive growth,in the perspective of corporate heterogeneity theory.It also involves the new path of the transformation from"quantity1'to"quality"regarding the amounts,models and locations of China's foreign trade and investment.At last,this theoretical frame is complemented upon a case study of free trade zone and regional cooperation of Guangdong,Hong Kong and Macao.展开更多
Exploring advanced platinum (Pt)-based electrocatalysts is vital for the widespread implementation of proton exchange membrane fuel cells (PEMFCs). Morphology control represents an effective strategy to optimize the b...Exploring advanced platinum (Pt)-based electrocatalysts is vital for the widespread implementation of proton exchange membrane fuel cells (PEMFCs). Morphology control represents an effective strategy to optimize the behavior of Pt catalysts. In this work, an attempt is made to comprehensively review the effect of morphology control on the catalytic behavior of catalysts in the oxygen reduction reaction (ORR). First, the fundamental physicochemical changes behind morphology control, including exposing more active sites, generating appropriate lattice strains, and forming different crystalline surfaces, are highlighted. Then, recently developed strategies for tuning the morphologies of electrocatalysts, including core-shell structures, hollow structures, nanocages, nanowires, and nanosheets, are comprehensively summarized. Finally, an outlook on the future development of morphology control of Pt catalysts is presented, including rational design strategies, advanced in situ characterization techniques, novel artificial intelligence, and mechanical learning. This work is intended to provide valuable insights into designing the morphology and technological innovation of efficient redox electrocatalysts in fuel cells.展开更多
Proton exchange membrane fuel cells(PEMFCs)are playing irreplaceable roles in the construction of the future sustainable energy system.However,the insufficient performance of platinum(Pt)-based electrocatalysts for ox...Proton exchange membrane fuel cells(PEMFCs)are playing irreplaceable roles in the construction of the future sustainable energy system.However,the insufficient performance of platinum(Pt)-based electrocatalysts for oxygen reduction reaction(ORR)hinders the overall efficiency of PEMFCs.Engineering the surface strain of catalysts is considered an effective way to tune their electronic structures and therefore optimize catalytic behavior.In this paper,insights into strain engineering for improving Pt-based catalysts toward ORR are elaborated in detail.First,recent advances in understanding the strain effects on ORR catalysts are comprehensively discussed.Then,strain engineering methodologies for adjusting Ptbased catalysts are comprehensively discussed.Finally,further information on the various challenges and potential prospects for strain modulation of Pt-based catalysts is provided.展开更多
At present,Ru dopants mainly enhance electrocatalytic performance by inducing strain,vacancy,local electron difference,and synergy.Surprisingly,this work innovatively proposes that trace Ru atoms induce dual-reconstru...At present,Ru dopants mainly enhance electrocatalytic performance by inducing strain,vacancy,local electron difference,and synergy.Surprisingly,this work innovatively proposes that trace Ru atoms induce dual-reconstruction of phosphide by regulating the electronic configuration and proportion of Co–P/Co–O species,and ultimately activate superb electrocatalytic performance.Specifically,Ru-CoFeP@C/nickel foam(NF)is reconstructed to generate hydrophilic Co(OH)_(2)nanosheets during the hydrogen evolution reaction(HER)process,further accelerating the alkaline HER kinetics of phosphide.And the as-formed CoOOH during the oxygen evolution reaction(OER)process directly accelerates the oxygen overflow efficiency.As expected,the overpotential at 100 mA·cm^(−2)(η100)values of the reconstructed Ru-CoFeP@C/NF are 0.104 and 0.257 V for HER and OER,which are greatly lower than that of Pt/C-NF and RuO_(2)-NF benchmarks,respectively.This work provides guidance for the construction of highperformance catalysts for HER and OER dual reconstruction.This work provides a new idea for the optimization of catalyst structure and electrocatalytic performance.展开更多
Proton exchange membrane water electrolysis(PEMWE)is considered one of the most promising pathways for producing green hydrogen(H2).However,the sluggish kinetic of the anodic oxygen evolution reaction(OER)hinders the ...Proton exchange membrane water electrolysis(PEMWE)is considered one of the most promising pathways for producing green hydrogen(H2).However,the sluggish kinetic of the anodic oxygen evolution reaction(OER)hinders the overall efficiency of PEMWE.In the past few decades,ruthenium(Ru)-based materials have been developed as highly active and cost-effective OER catalysts while faced with significant durability challenges.To this end,addressing the durability issues of Ru catalysts is imperative for their practical employment in PEMWE.In this review,state-of-the-art advances in understanding the degradation mechanisms of Ru catalysts in acidic conditions are comprehensively discussed.Then,materials engineering strategies to mitigate degradation through the rational design of stable Ru-catalysts are highlighted.Finally,some prospects are provided in terms of exploring the long-term stability of Ru-based catalysts.This review is anticipated to foster a better understanding of Ru-based catalysts in acidic OER and work on novel strategies for the design of stable Ru-based materials.展开更多
Dear Editor,Strokes cause 5.8 million deaths each year.Among these victims,~30% are from China1.Acute ischemic stroke(AIS)is the most prevalent subtype of strokes.Although drugs can alleviate the symptoms,the recoveri...Dear Editor,Strokes cause 5.8 million deaths each year.Among these victims,~30% are from China1.Acute ischemic stroke(AIS)is the most prevalent subtype of strokes.Although drugs can alleviate the symptoms,the recoveries of functional vessels within ischemic areas are the critical factor determining the prognosis of patients suffering from AIS2.Nevertheless,the mechanisms involved in cerebral revascularization remain largely unknown.展开更多
文摘Most of the existing vector data matching methods use traditional feature geometry attribute features to match, however, many of the similarity indicators are not suitable for cross-scale data, resulting in less accuracy in identifying objects. In order to solve this problem effectively, a deep learning model for vector road data matching is proposed based on siamese neural network and VGG16 convolutional neural network, and matching experiments are carried out. Experimental results show that the proposed vector road data matching model can achieve an accuracy of more than 90% under certain data support and threshold conditions.
基金This work was supported by Guangdong Basic and Applied Basic Research Foundation(2019A1515110530,2022A1515010486)Shenzhen Science and Technology Program(JCYJ20210324140804013)Tsinghua Shenzhen International Graduate School(QD2021005N,JC2021007).
文摘Green energy storage devices play vital roles in reducing fossil fuel emissions and achieving carbon neutrality by 2050.Growing markets for portable electronics and electric vehicles create tremendous demand for advanced lithium-ion batteries(LIBs)with high power and energy density,and novel electrode material with high capacity and energy density is one of the keys to next-generation LIBs.Silicon-based materials,with high specific capacity,abundant natural resources,high-level safety and environmental friendliness,are quite promising alternative anode materials.However,significant volume expansion and redundant side reactions with electrolytes lead to active lithium loss and decreased coulombic efficiency(CE)of silicon-based material,which hinders the commercial application of silicon-based anode.Prelithiation,preembedding extra lithium ions in the electrodes,is a promising approach to replenish the lithium loss during cycling.Recent progress on prelithiation strategies for silicon-based anode,including electrochemical method,chemical method,direct contact method,and active material method,and their practical potentials are reviewed and prospected here.The development of advanced Si-based material and prelithiation technologies is expected to provide promising approaches for the large-scale application of silicon-based materials.
文摘Resveratrol possesses beneficial biological effects, which include anti-oxidant, anti-inflammatory and anti-carcinogenic properties. Recently, resveratrol has been shown to exhibit neuroprotective effects in models of Parkinson's disease, cerebral ischemia and Alzheimer's disease. However, its effects on vascular dementia remain unclear. The present study established a rat model of vascular dementia using permanent bilateral common carotid artery occlusion. At 8-12 weeks after model induction, rats were intragastrically administered 25 mg/kg resveratrol daily. Our results found that resveratrol shortened the escape latency and escape distances in the Morris water maze, and pro- longed the time spent percentage and swimming distance percentage in the target quadrant during the probe test, indicating that resveratrol improved learning and memory ability in vascular dementia rats. Further experiments found that resveratrol decreased malonyldialdehyde levels, and increased superoxide dismutase activity and glutathione levels in the hippocampus and cerebral cortex of vascular dementia rats. These results confirmed that the neuroprotective effects of resveratrol on vascular dementia were associated with its anti-oxidant properties.
基金supported by the National Natural Science Foundation of China,No.30770758
文摘Kainic acid can simulate excitatory amino acids in vitro. Neural stem cells, isolated from newborn Wistar rats, were cultured in vitro and exposed to 100 4 000 #M kainic acid for 7 days to induce neuronal cell differentiation, causing the number of astrocytes to be significantly increased. Treatment with a combination of 0.5 mg/L gastrodin and kainic acid also caused the number of differentiated neurons to be significantly increased compared with treatment with kainic acid alone Experimental findings suggest that gastrodin reduces the excitability of kainic acid and induces neural stem cell differentiation into neurons.
文摘We propose an influential set based moving k keyword query processing model, which avoids the shortcoming of safe region-based approaches that the update cost and update frequency cannot be optimized simultaneously. Based on the model, we design a parallel query processing method and a parallel validation method for multicore processing platforms. The time complexity of the algorithms is O((log|D|+p.k)/p.k)?and O(log p.k), respectively, which are all O(1/k) times the time complexity of the state-of-the-art method. The experiment result confirms the superiority of our algorithms over the state-of-the-art method.
文摘This paper attempts to establish a framework of upgrading mechanism in China's foreign economic opening strate莒y in order to conclude the new connotation of upgrade for China's foreign economic opening,with the basic starting point of ternary marginal extension on extensive growth,in the perspective of corporate heterogeneity theory.It also involves the new path of the transformation from"quantity1'to"quality"regarding the amounts,models and locations of China's foreign trade and investment.At last,this theoretical frame is complemented upon a case study of free trade zone and regional cooperation of Guangdong,Hong Kong and Macao.
基金the Natural Science Foundation of Shaanxi Province,China(No.2023-JC-YB-122)the High-level Innovation and Entrepreneurship Talent Project from Qinchuangyuan of Shaanxi Province,China(No.QCYRCXM-2022-226)+2 种基金the Fundamental Research Funds for the Central Universities,China(No.D5000210987)the Joint Fund Project-Enterprise-Shaanxi Coal Joint Fund Project,China(No.2021JLM-38)the National Natural Science Foundation of China(Grant No.22379123,No.22250710676),the Fujian Province Minjiang Scholar Program,China.
文摘Exploring advanced platinum (Pt)-based electrocatalysts is vital for the widespread implementation of proton exchange membrane fuel cells (PEMFCs). Morphology control represents an effective strategy to optimize the behavior of Pt catalysts. In this work, an attempt is made to comprehensively review the effect of morphology control on the catalytic behavior of catalysts in the oxygen reduction reaction (ORR). First, the fundamental physicochemical changes behind morphology control, including exposing more active sites, generating appropriate lattice strains, and forming different crystalline surfaces, are highlighted. Then, recently developed strategies for tuning the morphologies of electrocatalysts, including core-shell structures, hollow structures, nanocages, nanowires, and nanosheets, are comprehensively summarized. Finally, an outlook on the future development of morphology control of Pt catalysts is presented, including rational design strategies, advanced in situ characterization techniques, novel artificial intelligence, and mechanical learning. This work is intended to provide valuable insights into designing the morphology and technological innovation of efficient redox electrocatalysts in fuel cells.
基金supported by the Natural Science Foundation of Shaanxi Province,China(Nos.2023-JC-YB-122,2024JCYBQN-0072)the High-level Innovation and Entrepreneurship Talent Project from Qinchuangyuan of Shaanxi Province,China(No.QCYRCXM-2022-226)+3 种基金the Fundamental Research Funds for the Central Universities,China(No.D5000210987)the Joint Fund Project-Enterprise-Shaanxi Coal Joint Fund Project,China(No.2021JLM-38)the National Natural Science Foundation of China(Grant No.22379123,No.22250710676)the Fujian Province Minjiang Scholar Program,China.
文摘Proton exchange membrane fuel cells(PEMFCs)are playing irreplaceable roles in the construction of the future sustainable energy system.However,the insufficient performance of platinum(Pt)-based electrocatalysts for oxygen reduction reaction(ORR)hinders the overall efficiency of PEMFCs.Engineering the surface strain of catalysts is considered an effective way to tune their electronic structures and therefore optimize catalytic behavior.In this paper,insights into strain engineering for improving Pt-based catalysts toward ORR are elaborated in detail.First,recent advances in understanding the strain effects on ORR catalysts are comprehensively discussed.Then,strain engineering methodologies for adjusting Ptbased catalysts are comprehensively discussed.Finally,further information on the various challenges and potential prospects for strain modulation of Pt-based catalysts is provided.
基金supported by the National Natural Science Foundation of China(Nos.52072197 and 21971132)the 111 Project of China(No.D20017)+5 种基金Outstanding Youth Foundation of Shandong Province,China(No.ZR2019JQ14)Natural Science Foundation of Shandong Province,China(No.ZR2022QE098)Major Scientific and Technological Innovation Project(No.2019JZZY020405)Major Basic Research Program of Natural Science Foundation of Shandong Province under Grant(No.ZR2020ZD09)Qingdao Postdoctoral Researcher Applied Research Project(No.04030431060100)Postdoctoral Innovation Project of Shandong Province(No.SDCX-ZG-20220307).
文摘At present,Ru dopants mainly enhance electrocatalytic performance by inducing strain,vacancy,local electron difference,and synergy.Surprisingly,this work innovatively proposes that trace Ru atoms induce dual-reconstruction of phosphide by regulating the electronic configuration and proportion of Co–P/Co–O species,and ultimately activate superb electrocatalytic performance.Specifically,Ru-CoFeP@C/nickel foam(NF)is reconstructed to generate hydrophilic Co(OH)_(2)nanosheets during the hydrogen evolution reaction(HER)process,further accelerating the alkaline HER kinetics of phosphide.And the as-formed CoOOH during the oxygen evolution reaction(OER)process directly accelerates the oxygen overflow efficiency.As expected,the overpotential at 100 mA·cm^(−2)(η100)values of the reconstructed Ru-CoFeP@C/NF are 0.104 and 0.257 V for HER and OER,which are greatly lower than that of Pt/C-NF and RuO_(2)-NF benchmarks,respectively.This work provides guidance for the construction of highperformance catalysts for HER and OER dual reconstruction.This work provides a new idea for the optimization of catalyst structure and electrocatalytic performance.
基金supported by the Natural Science Foundation of Shaanxi Province(grant no.2023-JC-YB-122)the High-level Innovation and Entrepreneurship Talent Project from Qinchuangyuan of Shaanxi Province(grant no.QCYRCXM-2022-226)the Joint Fund Project-Enterprise-Shaanxi Coal Joint Fund Project(grant no.2021JLM-38).
文摘Proton exchange membrane water electrolysis(PEMWE)is considered one of the most promising pathways for producing green hydrogen(H2).However,the sluggish kinetic of the anodic oxygen evolution reaction(OER)hinders the overall efficiency of PEMWE.In the past few decades,ruthenium(Ru)-based materials have been developed as highly active and cost-effective OER catalysts while faced with significant durability challenges.To this end,addressing the durability issues of Ru catalysts is imperative for their practical employment in PEMWE.In this review,state-of-the-art advances in understanding the degradation mechanisms of Ru catalysts in acidic conditions are comprehensively discussed.Then,materials engineering strategies to mitigate degradation through the rational design of stable Ru-catalysts are highlighted.Finally,some prospects are provided in terms of exploring the long-term stability of Ru-based catalysts.This review is anticipated to foster a better understanding of Ru-based catalysts in acidic OER and work on novel strategies for the design of stable Ru-based materials.
基金This work was supported by the National Natural Science Foundation of China(81630068,31670881,81502628,and U1304804)the Health Commission of Henan Province(YXKC2020056 and 201702013).
文摘Dear Editor,Strokes cause 5.8 million deaths each year.Among these victims,~30% are from China1.Acute ischemic stroke(AIS)is the most prevalent subtype of strokes.Although drugs can alleviate the symptoms,the recoveries of functional vessels within ischemic areas are the critical factor determining the prognosis of patients suffering from AIS2.Nevertheless,the mechanisms involved in cerebral revascularization remain largely unknown.