Lipids and glucose exert many essential physiological functions,such as providing raw materials or energy for cellular biosynthesis,regulating cell signal transduction,and maintaining a constant body temperature.Dysre...Lipids and glucose exert many essential physiological functions,such as providing raw materials or energy for cellular biosynthesis,regulating cell signal transduction,and maintaining a constant body temperature.Dysregulation of lipid and glucose metabolism can lead to glucolipid metabolic disorders linked to various metabolic diseases,such as obesity,diabetes,and cardiovascular disease.Therefore,intervention in glucolipid metabolism is a key therapeutic strategy for the treatment of metabolic diseases.Activating transcription factor 3(ATF3)is a transcription factor that acts as a hub of the cellular adaptive-response network and plays a pivotal role in the regulation of inflammation,apoptosis,DNA repair,and oncogenesis.Emerging evidence has illustrated the vital roles of ATF3 in glucolipid metabolism.ATF3 inhibits intestinal lipid absorption,enhances hepatic triglyceride hydrolysis and fatty acid oxidation,promotes macrophage reverse cholesterol transport,and attenuates the progression of western diet-induced nonalcoholic fatty liver disease and atherosclerosis.In addition to its role in lipid metabolism,ATF3 has also been identified as an important regulator of glucose metabolism.Here,we summarize the recent advances in the understanding of ATF3,mainly focusing on its role in glucose and lipid metabolism and potential therapeutic implications.展开更多
The reaction mechanism and kinetics of the simplest Criegee intermediate CH_(2)OO reaction with hydroperoxymethyl formate(HPMF)was investigated at high-level quantum chemistry calculations.HPMF has two reactive functi...The reaction mechanism and kinetics of the simplest Criegee intermediate CH_(2)OO reaction with hydroperoxymethyl formate(HPMF)was investigated at high-level quantum chemistry calculations.HPMF has two reactive functional groups,-C(O)OH and-OOH.The calculated results of thermodynamic data and rate constants indicated that the insertion reactions of CH_(2) OO with-OOH group of HPMF were more favorable than the reactions of CH_(2)OO with-C(O)OH group.The calculated overall rate constant was 2.33×10^(−13) cm^(3)/(moleculesec)at 298 K and the rate constants decreased as the temperature increased from 200 to 480 K.In addition,we also proved the polymerization reaction mechanism between CH_(2)OO and-OOH of HPMF.This theoretical study interpreted the previous experimental results,and supplied the structures of the intermediate products that couldn’t be detected during the experiment.展开更多
基金the National Natural Science Foundation of China(32271218 to Y.X.)in part by grants from the National Natural Science Foundation of China(81670519 to J.L.)the Science and Technology Commission of Shanghai Municipality(22ZR1414300 to H.W.).
文摘Lipids and glucose exert many essential physiological functions,such as providing raw materials or energy for cellular biosynthesis,regulating cell signal transduction,and maintaining a constant body temperature.Dysregulation of lipid and glucose metabolism can lead to glucolipid metabolic disorders linked to various metabolic diseases,such as obesity,diabetes,and cardiovascular disease.Therefore,intervention in glucolipid metabolism is a key therapeutic strategy for the treatment of metabolic diseases.Activating transcription factor 3(ATF3)is a transcription factor that acts as a hub of the cellular adaptive-response network and plays a pivotal role in the regulation of inflammation,apoptosis,DNA repair,and oncogenesis.Emerging evidence has illustrated the vital roles of ATF3 in glucolipid metabolism.ATF3 inhibits intestinal lipid absorption,enhances hepatic triglyceride hydrolysis and fatty acid oxidation,promotes macrophage reverse cholesterol transport,and attenuates the progression of western diet-induced nonalcoholic fatty liver disease and atherosclerosis.In addition to its role in lipid metabolism,ATF3 has also been identified as an important regulator of glucose metabolism.Here,we summarize the recent advances in the understanding of ATF3,mainly focusing on its role in glucose and lipid metabolism and potential therapeutic implications.
基金supported by the National Key Research and Development Program of China(No.2016YFC0202200)the Na-tional Natural Science Foundation of China(No.42022039)+2 种基金Beijing National Laboratory for Molecular Sciences(No.BNLMS-CXXM-202011)Beijing Nova Program(No.2018113)the Youth Innovation Promotion Association CAS(No.2017042).
文摘The reaction mechanism and kinetics of the simplest Criegee intermediate CH_(2)OO reaction with hydroperoxymethyl formate(HPMF)was investigated at high-level quantum chemistry calculations.HPMF has two reactive functional groups,-C(O)OH and-OOH.The calculated results of thermodynamic data and rate constants indicated that the insertion reactions of CH_(2) OO with-OOH group of HPMF were more favorable than the reactions of CH_(2)OO with-C(O)OH group.The calculated overall rate constant was 2.33×10^(−13) cm^(3)/(moleculesec)at 298 K and the rate constants decreased as the temperature increased from 200 to 480 K.In addition,we also proved the polymerization reaction mechanism between CH_(2)OO and-OOH of HPMF.This theoretical study interpreted the previous experimental results,and supplied the structures of the intermediate products that couldn’t be detected during the experiment.