Tumor vaccines are a promising avenue in cancer immunotherapy.Despite the progress in targeting specific immune epitopes,tumor cells lacking these epitopes can evade the treatment.Here,we aimed to construct an efficie...Tumor vaccines are a promising avenue in cancer immunotherapy.Despite the progress in targeting specific immune epitopes,tumor cells lacking these epitopes can evade the treatment.Here,we aimed to construct an efficient in situ tumor vaccine called Vac-SM,utilizing shikonin(SKN)to induce immunogenic cell death(ICD)and Mycobacterium smegmatis as an immune adjuvant to enhance in situ tumor vaccine efficacy.SKN showed a dose-dependent and time-dependent cytotoxic effect on the tumor cell line and induced ICD in tumor cells as evidenced by the CCK-8 assay and the detection of the expression of relevant indicators,respectively.Compared with the control group,the in situ Vac-SM injection in mouse subcutaneous metastatic tumors significantly inhibited tumor growth and distant tumor metastasis,while also improving survival rates.Mycobacterium smegmatis effectively induced maturation and activation of bone marrow-derived dendritic cells(DCs),and in vivo tumor-draining lymph nodes showed an increased maturation of DCs and a higher proportion of effector memory T-cell subsets with the Vac-SM treatment,based on flow cytometry analysis results.Collectively,the Vac-SM vaccine effectively induces ICD,improves antigen presentation by DCs,activates a specific systemic antitumor T-cell immune response,exhibits a favorable safety profile,and holds the promise for clinical translation for local tumor immunotherapy.展开更多
Engineered bacteria have shown great potential in cancer immunotherapy by dynamically releasing therapeutic payloads and inducing sustained antitumor immune response with the crosstalk of immune cells.In previous stud...Engineered bacteria have shown great potential in cancer immunotherapy by dynamically releasing therapeutic payloads and inducing sustained antitumor immune response with the crosstalk of immune cells.In previous studies,FOLactis was designed,which could secret an encoded fusion protein of Fms-related tyrosine kinase 3 ligand and co-stimulator OX40 ligand,leading to remarkable tumor suppression and exerting an abscopal effect by intratumoral injection.However,it is difficult for intratumoral administration of FOLactis in solid tumors with firm texture or high internal pressure.For patients without lesions such as abdominal metastatic tumors and orthotopic gastric tumors,intratumoral injection is not feasible and peritumoral maybe a better choice.Herein,an engineered bacteria delivery system is constructed based on in situ temperature-sensitive poloxamer 407 hydrogels.Peritumoral injection of FOLactis/P407 results in a 5-fold increase in the proportion of activated DC cells and a more than 2-fold increase in the proportion of effective memory T cells(TEM),playing the role of artificial lymph island.Besides,administration of FOLactis/P407 significantly inhibits the growth of abdominal metastatic tumors and orthotopic gastric tumors,resulting in an extended survival time.Therefore,these findings demonstrate the delivery approach of engineered bacteria based on in situ hydrogel will promote the efficacy and universality of therapeutics.展开更多
基金supported by grants from the Natural Science Foundation of Huai'an Science and Technology Bureau(Grant No.HAB202312)the Science and Technology Development Fund of the Affiliated Hospital of Xuzhou Medical University(Grant No.XYFY2021018).
文摘Tumor vaccines are a promising avenue in cancer immunotherapy.Despite the progress in targeting specific immune epitopes,tumor cells lacking these epitopes can evade the treatment.Here,we aimed to construct an efficient in situ tumor vaccine called Vac-SM,utilizing shikonin(SKN)to induce immunogenic cell death(ICD)and Mycobacterium smegmatis as an immune adjuvant to enhance in situ tumor vaccine efficacy.SKN showed a dose-dependent and time-dependent cytotoxic effect on the tumor cell line and induced ICD in tumor cells as evidenced by the CCK-8 assay and the detection of the expression of relevant indicators,respectively.Compared with the control group,the in situ Vac-SM injection in mouse subcutaneous metastatic tumors significantly inhibited tumor growth and distant tumor metastasis,while also improving survival rates.Mycobacterium smegmatis effectively induced maturation and activation of bone marrow-derived dendritic cells(DCs),and in vivo tumor-draining lymph nodes showed an increased maturation of DCs and a higher proportion of effector memory T-cell subsets with the Vac-SM treatment,based on flow cytometry analysis results.Collectively,the Vac-SM vaccine effectively induces ICD,improves antigen presentation by DCs,activates a specific systemic antitumor T-cell immune response,exhibits a favorable safety profile,and holds the promise for clinical translation for local tumor immunotherapy.
基金supported by the National Natural Science Foundation of China (82272811 and 81930080)the Fund for Distinguished Young Scholars of Jiangsu Province (BK20230001).
文摘Engineered bacteria have shown great potential in cancer immunotherapy by dynamically releasing therapeutic payloads and inducing sustained antitumor immune response with the crosstalk of immune cells.In previous studies,FOLactis was designed,which could secret an encoded fusion protein of Fms-related tyrosine kinase 3 ligand and co-stimulator OX40 ligand,leading to remarkable tumor suppression and exerting an abscopal effect by intratumoral injection.However,it is difficult for intratumoral administration of FOLactis in solid tumors with firm texture or high internal pressure.For patients without lesions such as abdominal metastatic tumors and orthotopic gastric tumors,intratumoral injection is not feasible and peritumoral maybe a better choice.Herein,an engineered bacteria delivery system is constructed based on in situ temperature-sensitive poloxamer 407 hydrogels.Peritumoral injection of FOLactis/P407 results in a 5-fold increase in the proportion of activated DC cells and a more than 2-fold increase in the proportion of effective memory T cells(TEM),playing the role of artificial lymph island.Besides,administration of FOLactis/P407 significantly inhibits the growth of abdominal metastatic tumors and orthotopic gastric tumors,resulting in an extended survival time.Therefore,these findings demonstrate the delivery approach of engineered bacteria based on in situ hydrogel will promote the efficacy and universality of therapeutics.