Simultaneous heterostructure and composition engineering is an effective route to construct electrocatalyst of high performance. Conjugated microporous polymer(CMP) is a new emerging platform material with designable ...Simultaneous heterostructure and composition engineering is an effective route to construct electrocatalyst of high performance. Conjugated microporous polymer(CMP) is a new emerging platform material with designable porosity and functionality. Here, a facile CMP-guest chemistry method was presented to prepare PdP2@Pd/C heterostructure with bifunctional electrocatalytic activity. The formation of heterostructure relies on a CMP precursor consisting of nitrogen groups that allow binding Pd species and introducing phosphorus inclusion. The Pd-bound CMP precursor formed in-situ could be directly converted into nitrogen-and phosphide-doped porous carbon(NPC) during pyrolysis, while P diffused to the Pd/C interface results in shallow phosphorization. The as-prepared NPC consisting of PdP2@Pd/C(Pd content 4 wt%) heterostructure demonstrated significantly enhanced electrocatalytic performances including a promising HER activity(58mV @ 10 mA/cm2), and an ORR activity approaching commercial 20 wt% Pd/C together with excellent long-term stability. Our work illustrates the intriguing power of CMP-guest potential in heterostructure engineering.展开更多
Conjugated microporous polymers (CMPs) featuring extended π-structures, large specific surface area and tailor-made functionalities are a class of promising organic photocatalysts for hydrogen evolution reaction (HER...Conjugated microporous polymers (CMPs) featuring extended π-structures, large specific surface area and tailor-made functionalities are a class of promising organic photocatalysts for hydrogen evolution reaction (HER) from water. However, the photocatalytic activities of most CMPs are severely hindered by slow charge transfer rate and fast charge recombination process. Herein, we develop a strategy for the synthesis of donor-acceptor CMPs through nickel(0)-catalyzed Yamamoto cross-coupling of 3,6-dibromo-9-(4-bromophenyl)carbazole (CZ) with 5,5'-dibromo-2,2'-bipyridine (DBPy) for efficient HER from water. The PCZN-4 prepared with a 2 : 3 stoichiometric ratio of CZ to DBPy exhibited the highest photocatalytic hydrogen evolution rate of 7160 μmol·g^(–1)·h^(–1), which was nearly equal to 179 times and 143 times that of PCZN-1 (40 μmol·g^(–1)·h^(–1)) and PCZN-6 (50 μmol·g^(–1)·h^(–1)) obtained by Yamamoto homocoupling of CZ and DBPy, respectively. Compared to the homocoupling counterparts, the enhanced photocatalytic activity of PCZN-4 results from improved separation efficiency of charge carriers. Interestingly, the photocatalytic H2 evolution performance of PCZN-4 could be further improved up to 17080 μmol·g^(–1)·h^(–1) by adjusting pH of the aqueous solution. This work offers a novel approach for improving photocatalytic efficiency by tuning the chemical structures and surrounding microenvironment of the polymer backbone.展开更多
Durable superamphiphobic surfaces are highly desired for real-world applications such as self-cleaning,anti-fouling,personal protection,and functional sportswear.However,challenges still exist in constructing robust s...Durable superamphiphobic surfaces are highly desired for real-world applications such as self-cleaning,anti-fouling,personal protection,and functional sportswear.However,challenges still exist in constructing robust superamphiphobic surfaces by using short-fluorinated polymers as one of the promising alternatives for environmentally unfriendly long perfluorinated side-chain polymers.Hierarchical patterns on biological skins endow the creatures with a specific surface for survival.Here,a facile strategy was proposed to generate hierarchical wrinkles for ultradurable superamphiphobic fabrics by simulating the deformation adaptability of snakeskin.Snake-like hierarchical winkling was constructed by the infusion of reactive perfluorooctyltriethoxysilane(FOS)in a wet chemical plus vapor polymerization process.Upon the infusion of FOS,the mismatch of shrinkage caused by gradient crosslinking leads to the formation of a soft wrinkled poly(perfluorooctyl trieth-oxysilane)(poly-FOS)surface.Such a snakeskin-like hierarchical wrinkled surface and high fluorine density of poly-FOS endowed the treated superamphiphobic fabrics with high water resistance(contact angle 169°),castor oil resistance(154°),and extraordinary durability(withstanding 100 standard laundries,15,000 rubbing cycles and strong acid and alkali solu-tions).Moreover,a superamphiphobic surface can be formed on various substrates,including fabric,wood,paper,and glass.This work thus gives new insights into the environmentally friendly manufacture of ultradurable superamphiphobic fabrics.展开更多
As a typical family of volatile toxic compounds,benzene derivatives are massive emission in industrial production and the automobile field,causing serious threat to human and environment.The reliable and convenient de...As a typical family of volatile toxic compounds,benzene derivatives are massive emission in industrial production and the automobile field,causing serious threat to human and environment.The reliable and convenient detection of low concentration benzene derivatives based on intelligent gas sensor is urgent and of great significance for environmental protection.Herein,through heteroatomic doping engineering,rare-earth gadolinium(Gd)doped mesoporous WO_(3)with uniform mesopores(15.7–18.1 nm),tunable high specific surface area(52–55 m^(2)·g^(−1)),customized crystalline pore walls,was designed and utilized to fabricate highly sensitive gas sensors toward benzene derivatives,such as ethylbenzene.Thanks to the high-density oxygen vacancies(OV)and significantly increased defects(W^(5+))produced by Gd atoms doping into the lattice of WO_(3)octahedron,Gd-doped mesoporous WO_(3)exhibited excellent ethylbenzene sensing performance,including high response(237 vs.50 ppm),rapid response–recovery dynamic(13 s/25 s vs.50 ppm),extremely low theoretical detection limit of 24 ppb.The in-situ diffuse reflectance infrared Fourier transform and gas chromatograph-mass spectrometry results revealed the gas sensing process underwent a catalytic oxidation conversion of ethylbenzene into alcohol species,benzaldehyde,acetophenone,and carboxylate species along with the resistance change of the Gd-doped mesoporous WO_(3)based sensor.Moreover,a portable smart gas sensing module was fabricated and demonstrated for real-time detecting ethylbenzene,which provided new ideas to design heteroatom doped mesoporous materials for intelligent sensors.展开更多
Conjugated microporous polymers(CMPs) with tunable bandgaps have attracted increasing attention for photocatalytic hydrogen evolution. However, the synthesis of CMPs usually needs expensive metal-based catalysts. Here...Conjugated microporous polymers(CMPs) with tunable bandgaps have attracted increasing attention for photocatalytic hydrogen evolution. However, the synthesis of CMPs usually needs expensive metal-based catalysts. Herein, we report a metal-free synthetic route to fabricate pyridyl conjugated microporous polymers(PCMPs) via a condensed polymerization between aldehyde and aryl ketone monomers. The PCMPs show widely tunable specific surface areas(347–418 m^(2)/g), which were controlled via changing the used monomers. The PCMPs synthesized using monomers of dialdehyde and diacetylbenzene(diacetylpyridine) in the presence of pyridine exhibited the highest visible-light driven hydrogen evolution rate(9.56 μmol/h). These novel designed PCMPs provide wide adaptability to current materials designed for high-performance photocatalysts in different applications.展开更多
Electrospinning spinneret:A bridge between the visible world and the invisible nanostructures.The Innovation 4(2),100381.Fabricating novel structures allows for the development of innovative technologies in nanoscienc...Electrospinning spinneret:A bridge between the visible world and the invisible nanostructures.The Innovation 4(2),100381.Fabricating novel structures allows for the development of innovative technologies in nanoscience.The methods to fabricate nanomaterials can be categorized based on the key elements determining the final structures of the materials.Electrospinning exhibits unparalleled advantages in the fabrication of nanofiberbased structures by benefitting from the effective interactions between the electrostatic energy and working fluids on a spinneret.As a convergence point of fluids and energy,the structure of the spinneret nozzle plays an important role in the working process and the resulting quality of the fibrous structures.展开更多
All-solid-state Li-SeS_(2) batteries(ASSLSs)are more attractive than traditional liquid Li-ion batteries due to superior thermal stability and higher energy density.However,various factors limit the practical applicat...All-solid-state Li-SeS_(2) batteries(ASSLSs)are more attractive than traditional liquid Li-ion batteries due to superior thermal stability and higher energy density.However,various factors limit the practical application of all-solid-state Li-SeS_(2) batteries,such as the low ionic conductivity of the solid-state electrolyte and the poor kinetic property of the cathode composite,resulting in unsatisfactory rate capability.Here,we employed a traditional ball milling method to design a Li_(7)P_(2.9)W_(0.05)S_(10.85) glass–ceramic electrolyte with high conductivity of 2.0 mS cm^(−1) at room temperature.In order to improve the kinetic property,an interpenetrating network strategy is proposed for rational cathode composite design.Signifcantly,the disordered cathode composite with an interpenetrating network could promote electronic and ionic conduction and intimate contacts between the electrolyte–electrode particles.Moreover,the tortuosity factor of the carrier transport channel is considerably reduced in electrode architectures,leading to superior kinetic performance.Thus,assembled ASSLS exhibited higher capacity and better rate capability than its counterpart.This work demonstrates that an interpenetrating network is essential for improving carrier transport in cathode composite for high rate all-solid-state Li-SeS_(2) batteries.展开更多
基金Sponsored by the National Natural Science Foundation of China (Grant Nos.52073046, 51873036, 51673039 and 21972163)the National Natural Science Foundation of Shanghai (Grant No.19ZR1470900)+3 种基金the Shanghai Shuguang Program (Grant No.19SG28)the Distinguished Young Professor Program (Donghua University)the Program of Shanghai Academic Research Leader (Grant No.21XD1420200)the International Joint Laboratory for Advanced Fiber and Low-Dimension Materials (Grant No.18520750400)。
文摘Simultaneous heterostructure and composition engineering is an effective route to construct electrocatalyst of high performance. Conjugated microporous polymer(CMP) is a new emerging platform material with designable porosity and functionality. Here, a facile CMP-guest chemistry method was presented to prepare PdP2@Pd/C heterostructure with bifunctional electrocatalytic activity. The formation of heterostructure relies on a CMP precursor consisting of nitrogen groups that allow binding Pd species and introducing phosphorus inclusion. The Pd-bound CMP precursor formed in-situ could be directly converted into nitrogen-and phosphide-doped porous carbon(NPC) during pyrolysis, while P diffused to the Pd/C interface results in shallow phosphorization. The as-prepared NPC consisting of PdP2@Pd/C(Pd content 4 wt%) heterostructure demonstrated significantly enhanced electrocatalytic performances including a promising HER activity(58mV @ 10 mA/cm2), and an ORR activity approaching commercial 20 wt% Pd/C together with excellent long-term stability. Our work illustrates the intriguing power of CMP-guest potential in heterostructure engineering.
基金support from the National Natu-ral Science Foundation of China(52073046,52203006)the Na-tional Key Research and Development Program of China(2022YFB3807100,2022YFB3807102,2022YFB3807103)+4 种基金the Pro-gram of Shanghai Academic Research Leader(21XD1420200)the Chang Jiang Scholar Program(Q2019152)the Natural Science Foundation of Shanghai(23ZR1401100)the Shanghai Pujiang Program(21PJ1400300)the Fundamental Research Funds for the Central Universities(2232022D-06).
文摘Conjugated microporous polymers (CMPs) featuring extended π-structures, large specific surface area and tailor-made functionalities are a class of promising organic photocatalysts for hydrogen evolution reaction (HER) from water. However, the photocatalytic activities of most CMPs are severely hindered by slow charge transfer rate and fast charge recombination process. Herein, we develop a strategy for the synthesis of donor-acceptor CMPs through nickel(0)-catalyzed Yamamoto cross-coupling of 3,6-dibromo-9-(4-bromophenyl)carbazole (CZ) with 5,5'-dibromo-2,2'-bipyridine (DBPy) for efficient HER from water. The PCZN-4 prepared with a 2 : 3 stoichiometric ratio of CZ to DBPy exhibited the highest photocatalytic hydrogen evolution rate of 7160 μmol·g^(–1)·h^(–1), which was nearly equal to 179 times and 143 times that of PCZN-1 (40 μmol·g^(–1)·h^(–1)) and PCZN-6 (50 μmol·g^(–1)·h^(–1)) obtained by Yamamoto homocoupling of CZ and DBPy, respectively. Compared to the homocoupling counterparts, the enhanced photocatalytic activity of PCZN-4 results from improved separation efficiency of charge carriers. Interestingly, the photocatalytic H2 evolution performance of PCZN-4 could be further improved up to 17080 μmol·g^(–1)·h^(–1) by adjusting pH of the aqueous solution. This work offers a novel approach for improving photocatalytic efficiency by tuning the chemical structures and surrounding microenvironment of the polymer backbone.
基金support of the National Natural Science Foundation of China(52073046,51873036,51673039,and 52103106)the Program of Shanghai Academic Leader(21XD1420200)+1 种基金the Chang Jiang Scholar Program(Q2019152)the Shanghai Shuguang Program(19SG28).
文摘Durable superamphiphobic surfaces are highly desired for real-world applications such as self-cleaning,anti-fouling,personal protection,and functional sportswear.However,challenges still exist in constructing robust superamphiphobic surfaces by using short-fluorinated polymers as one of the promising alternatives for environmentally unfriendly long perfluorinated side-chain polymers.Hierarchical patterns on biological skins endow the creatures with a specific surface for survival.Here,a facile strategy was proposed to generate hierarchical wrinkles for ultradurable superamphiphobic fabrics by simulating the deformation adaptability of snakeskin.Snake-like hierarchical winkling was constructed by the infusion of reactive perfluorooctyltriethoxysilane(FOS)in a wet chemical plus vapor polymerization process.Upon the infusion of FOS,the mismatch of shrinkage caused by gradient crosslinking leads to the formation of a soft wrinkled poly(perfluorooctyl trieth-oxysilane)(poly-FOS)surface.Such a snakeskin-like hierarchical wrinkled surface and high fluorine density of poly-FOS endowed the treated superamphiphobic fabrics with high water resistance(contact angle 169°),castor oil resistance(154°),and extraordinary durability(withstanding 100 standard laundries,15,000 rubbing cycles and strong acid and alkali solu-tions).Moreover,a superamphiphobic surface can be formed on various substrates,including fabric,wood,paper,and glass.This work thus gives new insights into the environmentally friendly manufacture of ultradurable superamphiphobic fabrics.
基金the National Key R&D Program of China(No.2020YFB2008600)the National Natural Science Foundation of China(Nos.21875044,22125501,and 22105043)+4 种基金the Key Basic Research Program of Science and Technology Commission of Shanghai Municipality(No.20JC1415300)the China Postdoctoral Science Foundation(Nos.2021TQ0066 and 2021M690660)the Fundamental Research Funds for the Central Universities(No.20720220010)the State Key Laboratory for Modification of Chemical Fibers and Polymer Materials,the young scientist project of MOE innovation platform,Donghua University(No.KF2120)the Foshan Science and Technology Innovation Program(No.2017IT100121).
文摘As a typical family of volatile toxic compounds,benzene derivatives are massive emission in industrial production and the automobile field,causing serious threat to human and environment.The reliable and convenient detection of low concentration benzene derivatives based on intelligent gas sensor is urgent and of great significance for environmental protection.Herein,through heteroatomic doping engineering,rare-earth gadolinium(Gd)doped mesoporous WO_(3)with uniform mesopores(15.7–18.1 nm),tunable high specific surface area(52–55 m^(2)·g^(−1)),customized crystalline pore walls,was designed and utilized to fabricate highly sensitive gas sensors toward benzene derivatives,such as ethylbenzene.Thanks to the high-density oxygen vacancies(OV)and significantly increased defects(W^(5+))produced by Gd atoms doping into the lattice of WO_(3)octahedron,Gd-doped mesoporous WO_(3)exhibited excellent ethylbenzene sensing performance,including high response(237 vs.50 ppm),rapid response–recovery dynamic(13 s/25 s vs.50 ppm),extremely low theoretical detection limit of 24 ppb.The in-situ diffuse reflectance infrared Fourier transform and gas chromatograph-mass spectrometry results revealed the gas sensing process underwent a catalytic oxidation conversion of ethylbenzene into alcohol species,benzaldehyde,acetophenone,and carboxylate species along with the resistance change of the Gd-doped mesoporous WO_(3)based sensor.Moreover,a portable smart gas sensing module was fabricated and demonstrated for real-time detecting ethylbenzene,which provided new ideas to design heteroatom doped mesoporous materials for intelligent sensors.
基金supported by the National Natural Science Foundation of China (Nos. 52103024, 52073046, 51873036 and51673039)the Program of Shanghai Academic Research Leader(No. 21XD1420200)+5 种基金the Shanghai Shuguang Program (No. 19SG28)the Chang Jiang Scholar Program (No. Q2019152)the Shanghai Pujiang Talent Program (No. 20PJ1400600)the Shanghai Natural Science Foundation (Nos. 22ZR1401600 and 19ZR1470900)the Fundamental Research Funds for the Central Universities(No. 2232021D-01)the Fundamental Research Funds for the Central Universities and Graduate Student Innovation Fund of Donghua University (No. CUSF-DH-D-2019024)。
文摘Conjugated microporous polymers(CMPs) with tunable bandgaps have attracted increasing attention for photocatalytic hydrogen evolution. However, the synthesis of CMPs usually needs expensive metal-based catalysts. Herein, we report a metal-free synthetic route to fabricate pyridyl conjugated microporous polymers(PCMPs) via a condensed polymerization between aldehyde and aryl ketone monomers. The PCMPs show widely tunable specific surface areas(347–418 m^(2)/g), which were controlled via changing the used monomers. The PCMPs synthesized using monomers of dialdehyde and diacetylbenzene(diacetylpyridine) in the presence of pyridine exhibited the highest visible-light driven hydrogen evolution rate(9.56 μmol/h). These novel designed PCMPs provide wide adaptability to current materials designed for high-performance photocatalysts in different applications.
基金the financial support for this research received from the Ministry of Science and Technology China-Korea Youth Researcher Exchange Program(2022–09)the National Natural Science Foundation of China(52203006)the Shanghai Sailing Program(21YF1431000).
文摘Electrospinning spinneret:A bridge between the visible world and the invisible nanostructures.The Innovation 4(2),100381.Fabricating novel structures allows for the development of innovative technologies in nanoscience.The methods to fabricate nanomaterials can be categorized based on the key elements determining the final structures of the materials.Electrospinning exhibits unparalleled advantages in the fabrication of nanofiberbased structures by benefitting from the effective interactions between the electrostatic energy and working fluids on a spinneret.As a convergence point of fluids and energy,the structure of the spinneret nozzle plays an important role in the working process and the resulting quality of the fibrous structures.
基金This work is supported by the National Natural Science Foundation of China(No.21975025,21203008,51772030)the National Key Research and Development Program of China“New Energy Project for Electric Vehicle”(No.2016YFB0100204)+1 种基金the Nature Science Foundation of Beijing Municipality(No.2172051)State Key Laboratory also funds the project for Modifcation of Chemical Fibers and Polymer Materials,Donghua University.DTA,XRD,XPS,and NMR measurements were performed in the Analysis&Testing Center,Beijing Institute of Technology。
文摘All-solid-state Li-SeS_(2) batteries(ASSLSs)are more attractive than traditional liquid Li-ion batteries due to superior thermal stability and higher energy density.However,various factors limit the practical application of all-solid-state Li-SeS_(2) batteries,such as the low ionic conductivity of the solid-state electrolyte and the poor kinetic property of the cathode composite,resulting in unsatisfactory rate capability.Here,we employed a traditional ball milling method to design a Li_(7)P_(2.9)W_(0.05)S_(10.85) glass–ceramic electrolyte with high conductivity of 2.0 mS cm^(−1) at room temperature.In order to improve the kinetic property,an interpenetrating network strategy is proposed for rational cathode composite design.Signifcantly,the disordered cathode composite with an interpenetrating network could promote electronic and ionic conduction and intimate contacts between the electrolyte–electrode particles.Moreover,the tortuosity factor of the carrier transport channel is considerably reduced in electrode architectures,leading to superior kinetic performance.Thus,assembled ASSLS exhibited higher capacity and better rate capability than its counterpart.This work demonstrates that an interpenetrating network is essential for improving carrier transport in cathode composite for high rate all-solid-state Li-SeS_(2) batteries.