Multicomponent polymerizations have become powerful tools for the construction of sequence-defined polymers. Although the Passerini multicomponent reaction has been widely used in the synthesis of sequence-defined pol...Multicomponent polymerizations have become powerful tools for the construction of sequence-defined polymers. Although the Passerini multicomponent reaction has been widely used in the synthesis of sequence-defined polymers, the tandem usage of the Passerini multicomponent reaction and other multicomponent reactions in one-pot for the synthesis of sequence-defined polymers has not been developed until now. In this contribution, we report the tandem usage of the Passerini three-component reaction and the three-component amine-thiol-ene conjugation reaction in one pot for the synthesis of sequence-defined polymers. The Passerini reaction between methacrylic acid, adipaldehyde, and 2-isocyanobutanoate was carried out, affording a new molecule containing two alkene units. Subsequently, an amine and a thiolactone were added to the reaction system, whereupon the three-component amine-thiol-ene conjugating reaction occurred to yield a sequence-defined polymer. This method offers more rapid access to sequence-defined polymers with high molecular diversity and complexity.展开更多
Advances in nanotechnology depend upon expanding the ability to create biologically inspired complex materials with well-defined multidimensional structures.Fabrication of hybrid hierarchical structures by combining c...Advances in nanotechnology depend upon expanding the ability to create biologically inspired complex materials with well-defined multidimensional structures.Fabrication of hybrid hierarchical structures by combining colloidal organic and inorganic building blocks remains a challenge due to the difficulty in preparing a diverse spectrum of rigid-flexible coupling units of precise shape and size.Herewe reportageneral strategy for crafting amyriad of uniform aggregates via manipulating self-assembly of distinct dendimers with precisely controlled polyhed raloligomeric silse squioxane(POSS)-embedded cores integrating stiffness and ductility.The rigidity of POSS units exerts steric effects onself-amplification of hydrophobic do mains while the flexibility from internally ductile linkages provides ideal scenarios in establishing self-adaptive structural optimization,which subsequently drive the assemblies to proceed into hierarchical self-assembly via multiple coordination effects,generating highly complex multi compartment micelles(MCMs)without any preprocessing.Our facile approach enables a robust modular nanofabrication of well-organized dendrimers toward artificial functional systems with defined geometric architectures and intriguing functions for advanced biological applications.展开更多
基金supported by the National Natural Science Foundation of China(51273187,21374107)the Fundamental Research Funds for the Central Universities(WK2060200012)the Program for New Century Excellent Talents in Universities(NCET-11-0882)
文摘Multicomponent polymerizations have become powerful tools for the construction of sequence-defined polymers. Although the Passerini multicomponent reaction has been widely used in the synthesis of sequence-defined polymers, the tandem usage of the Passerini multicomponent reaction and other multicomponent reactions in one-pot for the synthesis of sequence-defined polymers has not been developed until now. In this contribution, we report the tandem usage of the Passerini three-component reaction and the three-component amine-thiol-ene conjugation reaction in one pot for the synthesis of sequence-defined polymers. The Passerini reaction between methacrylic acid, adipaldehyde, and 2-isocyanobutanoate was carried out, affording a new molecule containing two alkene units. Subsequently, an amine and a thiolactone were added to the reaction system, whereupon the three-component amine-thiol-ene conjugating reaction occurred to yield a sequence-defined polymer. This method offers more rapid access to sequence-defined polymers with high molecular diversity and complexity.
基金This work was supported by NSFC(nos.51973226,21725403,51803188,and 21504096),the Ministry of Science and Technology of China(no.2014CB932200),and the China Postdoctoral Science Foundation(nos.2018M642783 and 2019T120636).
文摘Advances in nanotechnology depend upon expanding the ability to create biologically inspired complex materials with well-defined multidimensional structures.Fabrication of hybrid hierarchical structures by combining colloidal organic and inorganic building blocks remains a challenge due to the difficulty in preparing a diverse spectrum of rigid-flexible coupling units of precise shape and size.Herewe reportageneral strategy for crafting amyriad of uniform aggregates via manipulating self-assembly of distinct dendimers with precisely controlled polyhed raloligomeric silse squioxane(POSS)-embedded cores integrating stiffness and ductility.The rigidity of POSS units exerts steric effects onself-amplification of hydrophobic do mains while the flexibility from internally ductile linkages provides ideal scenarios in establishing self-adaptive structural optimization,which subsequently drive the assemblies to proceed into hierarchical self-assembly via multiple coordination effects,generating highly complex multi compartment micelles(MCMs)without any preprocessing.Our facile approach enables a robust modular nanofabrication of well-organized dendrimers toward artificial functional systems with defined geometric architectures and intriguing functions for advanced biological applications.