The fusion of the leaching and purification processes was realized by directly using microemulsion as the leaching agent.The bis-(2-ethyhexyl)phosphoric acid(DEHPA)/n-heptane/NaOH microemulsion system was established ...The fusion of the leaching and purification processes was realized by directly using microemulsion as the leaching agent.The bis-(2-ethyhexyl)phosphoric acid(DEHPA)/n-heptane/NaOH microemulsion system was established to directly leach vanadates from sodium-roasted vanadium slag.The effect of the leaching agent on the leaching efficiency was investigated,in addition to the molar ratio of H_(2)O/NaDEHP(W),DEHPA concentration,solid/liquid ratio,stirring time,and leaching temperature.In optimal situations,the vanadium leaching efficiency reaches 79.57%.The X-ray diffraction characterization of the leaching residue and the Raman spectrum of the microemulsion before and after leaching demonstrate the successful entry of vanadates from the sodium-roasted vanadium slag into the microemulsion.The proposed method successfully realizes the leaching and purification of vanadates in one step,thereby greatly reducing production costs and environmental pollution.It also offers a new way to achieve the green recovery of valuable metals from solid resources.展开更多
基金This work was financially supported by the National Natural Science Foundation of China(Nos.51474041 and 51674051)Chongqing Science and Technology Bureau(No.cstc2019jcyjjqX0006)Chongqing Talents Plan for Young Talents(No.CQYC201905050).
文摘The fusion of the leaching and purification processes was realized by directly using microemulsion as the leaching agent.The bis-(2-ethyhexyl)phosphoric acid(DEHPA)/n-heptane/NaOH microemulsion system was established to directly leach vanadates from sodium-roasted vanadium slag.The effect of the leaching agent on the leaching efficiency was investigated,in addition to the molar ratio of H_(2)O/NaDEHP(W),DEHPA concentration,solid/liquid ratio,stirring time,and leaching temperature.In optimal situations,the vanadium leaching efficiency reaches 79.57%.The X-ray diffraction characterization of the leaching residue and the Raman spectrum of the microemulsion before and after leaching demonstrate the successful entry of vanadates from the sodium-roasted vanadium slag into the microemulsion.The proposed method successfully realizes the leaching and purification of vanadates in one step,thereby greatly reducing production costs and environmental pollution.It also offers a new way to achieve the green recovery of valuable metals from solid resources.