期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Erosion wear at the bend of pipe during tailings slurry transportation:Numerical study considering inlet velocity,particle size and bend angle
1
作者 Qiusong Chen Hailong Zhou +3 位作者 Yunmin Wang Daolin Wang Qinli Zhang yikai liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第8期1608-1620,共13页
Pipeline hydraulic transport is a highly efficient and low energy-consumption method for transporting solids and is commonly used for tailing slurry transport in the mining industry.Erosion wear(EW)remains the main ca... Pipeline hydraulic transport is a highly efficient and low energy-consumption method for transporting solids and is commonly used for tailing slurry transport in the mining industry.Erosion wear(EW)remains the main cause of failure in tailings slurry pipeline systems,particularly at bends.EW is a complex phenomenon influenced by numerous factors,but research in this area has been limited.This study performs numerical simulations of slurry transport at the bend by combining computational fluid dynamics and fluid particle tracking using a wear model.Based on the validation of the feasibility of the model,this work focuses on the effects of coupled inlet velocity(IV)ranging from 1.5 to 3.0 m·s^(-1),particle size(PS)ranging from 50 to 650μm,and bend angle(BA)ranging from 45°to 90°on EW at the bend in terms of particle kinetic energy and incidence angle.The results show that the maximum EW rate of the slurry at the bend increases exponentially with IV and PS and first increases and then decreases with the increase in BA with the inflection point at 60°within these parameter ranges.Further comprehensive analysis reveals that the sensitivity level of the three factors to the maximum EW rate is PS>IV>BA,and when IV is 3.0 m/s,PS is 650μm,and BA is 60°,the bend EW is the most severe,and the maximum EW rate is 5.68×10^(-6)kg·m^(-2)·s^(-1).In addition,When PS is below or equal to 450μm,the maximum EW position is mainly at the outlet of the bend.When PS is greater than 450μm,the maximum EW position shifts toward the center of the bend with the increase in BA.Therefore,EW at the bend can be reduced in practice by reducing IV as much as possible and using small particles. 展开更多
关键词 tailings transportation erosion wear pipe wear CFD numerical simulation
下载PDF
Using cemented paste backfill to tackle the phosphogypsum stockpile in China:A down-to-earth technology with new vitalities in pollutant retention and CO_2 abatement
2
作者 yikai liu Yunmin Wang Qiusong Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2024年第7期1480-1499,共20页
Phosphogypsum(PG),a hard-to-dissipate by-product of the phosphorus fertilizer production industry,places strain on the biogeochemical cycles and ecosystem functions of storage sites.This pervasive problem is already w... Phosphogypsum(PG),a hard-to-dissipate by-product of the phosphorus fertilizer production industry,places strain on the biogeochemical cycles and ecosystem functions of storage sites.This pervasive problem is already widespread worldwide and requires careful stewardship.In this study,we review the presence of potentially toxic elements(PTEs)in PG and describe their associations with soil properties,anthropogenic activities,and surrounding organisms.Then,we review different ex-/in-situ solutions for promoting the sustainable management of PG,with an emphasis on in-situ cemented paste backfill,which offers a cost-effective and highly scalable opportunity to advance the value-added recovery of PG.However,concerns related to the PTEs'retention capacity and long-term effectiveness limit the implementation of this strategy.Furthermore,given that the large-scale demand for ordinary Portland cement from this conventional option has resulted in significant CO_2 emissions,the technology has recently undergone additional scrutiny to meet the climate mitigation ambition of the Paris Agreement and China's Carbon Neutrality Economy.Therefore,we discuss the ways by which we can integrate innovative strategies,including supplementary cementitious materials,alternative binder solutions,CO_2 mineralization,CO_2 curing,and optimization of the supply chain for the profitability and sustainability of PG remediation.However,to maximize the co-benefits in environmental,social,and economic,future research must bridge the gap between the feasibility of expanding these advanced pathways and the multidisciplinary needs. 展开更多
关键词 cemented paste backfill phosphogypsum carbon dioxide mitigation potentially toxic elements solidification and stabilization
下载PDF
A Perspective on Solar Energy-powered Road and Rail Transportation in China 被引量:3
3
作者 Limin Jia Jing Ma +1 位作者 Peng Cheng yikai liu 《CSEE Journal of Power and Energy Systems》 SCIE CSCD 2020年第4期760-771,共12页
As essential pillars of passenger mobility and freight transport,road and rail transportation have experienced a rapid increase over the past years.This trend indicates an increase in energy consumption,especially ele... As essential pillars of passenger mobility and freight transport,road and rail transportation have experienced a rapid increase over the past years.This trend indicates an increase in energy consumption,especially electricity,due to higher energy efficiency and less carbon emission,but it exacerbates the contradiction between the power supply and demand.Nowadays,for additional power sources,increased solar power generation has been widely installed in their own available spaces for road and rail transportation,which has attracted a great deal of attention.This paper reviews the current status of solar power generation and its integrated application in the transport sector.Then,the photovoltaic generation potential of road and rail transportation in China are evaluated.Finally,further developments and perspectives of solar energy-powered road and rail transportation are presented,which not only contributes to lower-carbon and green transportation,but also promotes the development of renewable power generation for energy transformation.It is confirmed that solar energy-powered road and rail transportation is a promising approach for sustainable transportation with more renewable energy and less carbon emission. 展开更多
关键词 Potential evaluation photovoltaic generation road and rail transportation solar energy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部