期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Hybrid C8-BTBT/In GaAs nanowire heterojunction for artificial photosynaptic transistors 被引量:1
1
作者 yiling nie Pengshan Xie +8 位作者 Xu Chen Chenxing Jin Wanrong Liu Xiaofang Shi Yunchao Xu Yongyi Peng Johnny C.Ho Jia Sun Junliang Yang 《Journal of Semiconductors》 EI CAS CSCD 2022年第11期9-21,共13页
The emergence of light-tunable synaptic transistors provides opportunities to break through the von Neumann bottleneck and enable neuromorphic computing.Herein,a multifunctional synaptic transistor is constructed by u... The emergence of light-tunable synaptic transistors provides opportunities to break through the von Neumann bottleneck and enable neuromorphic computing.Herein,a multifunctional synaptic transistor is constructed by using 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene(C8-BTBT)and indium gallium arsenide(InGaAs)nanowires(NWs)hybrid heterojunction thin film as the active layer.Under illumination,the Type-I C8-BTBT/InGaAs NWs heterojunction would make the dissociated photogenerated excitons more difficult to recombine.The persistent photoconductivity caused by charge trapping can then be used to mimic photosynaptic behaviors,including excitatory postsynaptic current,long/short-term memory and Pavlovian learning.Furthermore,a high classification accuracy of 89.72%can be achieved through the single-layer-perceptron hardware-based neural network built from C8-BTBT/InGaAs NWs synaptic transistors.Thus,this work could provide new insights into the fabrication of high-performance optoelectronic synaptic devices. 展开更多
关键词 photonic synaptic transistor C8-BTBT INGAAS HETEROJUNCTION
下载PDF
Flexible multiterminal photoelectronic neurotransistors based on self‐assembled rubber semiconductors for spatiotemporal information processing
2
作者 Yunchao Xu Gengming Zhang +4 位作者 Wanrong Liu Chenxing Jin yiling nie Jia Sun Junliang Yang 《SmartMat》 2023年第2期78-87,共10页
A significant step toward constructing high‐efficiency neuromorphic systems is the electronic emulation of advanced synaptic functions of the human brain.While previous studies have focused on mimicking the basic fun... A significant step toward constructing high‐efficiency neuromorphic systems is the electronic emulation of advanced synaptic functions of the human brain.While previous studies have focused on mimicking the basic functions of synapses using single‐gate transistors,multigate transistors offer an opportunity to simulate more complex and advanced memory‐forming behaviors in biological synapses.In this study,a simple and general method is used to assemble rubber semiconductors into suspended two‐phase composite films that are transferred to the surface of the ion‐conducting membrane to fabricate flexible multiterminal photoelectronic neurotransistors.The suspended ion conductive film is used as the gate dielectrics and supporting substrate.The prepared devices exhibit excellent electrical stability and mechanical flexibility after being bent.Basic photoelectronic synaptic behavior and pulse‐dependent plasticity are emulated.Furthermore,the device realizes the spatiotemporally integrated electrical and optical stimuli to mimic spatiotemporal information processing.This study provides a promising direction for constructing more complex spiking neural networks and more powerful neuromorphic systems with brain‐like dynamic spatiotemporal processing functions. 展开更多
关键词 ion‐conducting membrane multiterminal neuromorphic devices optoelectronic neurotransistors self‐assembly semiconductor spatiotemporal information processing
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部