Attempts have been made to use cell transplantation and biomaterials to promote cell proliferation,differentiation,migration,and survival,as well as angiogenesis,in the context of brain injury.However,whether bioactiv...Attempts have been made to use cell transplantation and biomaterials to promote cell proliferation,differentiation,migration,and survival,as well as angiogenesis,in the context of brain injury.However,whether bioactive materials can repair the damage caused by ischemic stroke by activating endogenous neurogenesis and angiogenesis is still unknown.In this study,we applied chitosan gel loaded with basic fibroblast growth factor to the stroke cavity 7 days after ischemic stroke in rats.The gel slowly released basic fibroblast growth factor,which improved the local microenvironment,activated endogenous neural stem/progenitor cells,and recruited these cells to migrate toward the penumbra and stroke cavity and subsequently differentiate into neurons,while enhancing angiogenesis in the penumbra and stroke cavity and ultimately leading to partial functional recovery.This study revealed the mechanism by which bioactive materials repair ischemic strokes,thus providing a new strategy for the clinical application of bioactive materials in the treatment of ischemic stroke.展开更多
One of the large-scale industrial applications of Moso bamboo and poplar in China is the production of standardized fiberboard.When making fiberboard,a steam blasting pretreatment without the addition of traditional a...One of the large-scale industrial applications of Moso bamboo and poplar in China is the production of standardized fiberboard.When making fiberboard,a steam blasting pretreatment without the addition of traditional adhesives has become increasingly popular because of its environmental friendliness and wide applicability.In this study,the steam explosion pretreatment of Moso bamboo and poplar was conducted.The steam explosion pressure and holding time were varied to determine the influence of these factors on fiber quality by investigating the morphology of the fiber,the mass ratio of the unexploded specimen at the end face,the chemical composition,and the tensile strength.The following conclusions were drawn:As the steam burst pressure and holding time increased,more cellulose and hemicellulose degradation occurred(the degradation of hemicellulose was greater than that of cellulose),the lignin content rose,and the fiber bundle strength decreased.The degradation of bamboo cellulose was slightly higher than that of poplar,and the degradation of poplar hemicellulose was significantly faster than that of bamboo.Furthermore,increasing the steam explosion pressure and pressure holding time could not effectively increase the lignin content.It is recommended to use a steam blasting pressure of 2.5 MPa or 3.0 MPa and a holding time of 180 s to perform steam blasting on bamboo and poplar specimens.展开更多
DAC CO_(2)capture is gaining wide attention as one of the most difficult carbon approaches to tackle climate change.In this work,different pore-size silica spheres were grafted using different amine groups such as APT...DAC CO_(2)capture is gaining wide attention as one of the most difficult carbon approaches to tackle climate change.In this work,different pore-size silica spheres were grafted using different amine groups such as APTES,APTMS,and Diamine.Herein,all samples based on the wet and dry grafting method were used for CO_(2)adsorption isotherm at room temperature and pressure(298 K and 1 bar).The sample based on the wet grafting(Silica-APTES-W)sample shows the highest CO_(2)uptake 1.67 mmol/g.Also,the adsorption isotherm of the Silica-APTES-W sample was showed a high capacity of CO_(2)1.2 mmol/g at 25℃,which describes the strong physical interaction between CO_(2)and amine.The isosteric adsorption of Silica-APTES-W also confirmed that the physical adsorption was dominant because of low adsorption heat ranging from 23 to 37 k J/mol.Also,the fixed bed experiment was conducted with 2000 ppm CO_(2)that obtains the optimal working capacity 4.5 m L/g with the lowest regeneration temperature 90℃.It was shown that Silica-APTES-W sample was superior performance for DAC CO_(2)capture in practical applications.展开更多
基金supported by the National Natural Science Foundation of China,Nos.81941011(to XL),31771053(to HD),31730030(to XL),31971279(to ZY),31900749(to PH),31650001(to XL),31320103903(to XL),31670988(to ZY)the Natural Science Foundation of Beijing,Nos.7222004(to HD)+1 种基金a grant from Ministry of Science and Technology of China,Nos.2017YFC1104002(to ZY),2017YFC1104001(to XL)a grant from Beihang University,No.JKF-YG-22-B001(to FH)。
文摘Attempts have been made to use cell transplantation and biomaterials to promote cell proliferation,differentiation,migration,and survival,as well as angiogenesis,in the context of brain injury.However,whether bioactive materials can repair the damage caused by ischemic stroke by activating endogenous neurogenesis and angiogenesis is still unknown.In this study,we applied chitosan gel loaded with basic fibroblast growth factor to the stroke cavity 7 days after ischemic stroke in rats.The gel slowly released basic fibroblast growth factor,which improved the local microenvironment,activated endogenous neural stem/progenitor cells,and recruited these cells to migrate toward the penumbra and stroke cavity and subsequently differentiate into neurons,while enhancing angiogenesis in the penumbra and stroke cavity and ultimately leading to partial functional recovery.This study revealed the mechanism by which bioactive materials repair ischemic strokes,thus providing a new strategy for the clinical application of bioactive materials in the treatment of ischemic stroke.
基金We thank Jiangsu Province High-level Talent Selection Training(JNHB-127)the National Key R&D Program of China(2017YFC0703501)+5 种基金the National Natural Science Foundation of China(51878590)Jiangsu Provincial Department of Housing and construction(2018ZD117 and 2019ZD092)the Natural Science Foundation of Jiangsu Province(Grant Nos.BK20170926 and BK20150878)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No.19KJD220002)the Yangzhou Science and Technology Project(YZ2019047)College Research Project(2019xjzk014)for their funding.
文摘One of the large-scale industrial applications of Moso bamboo and poplar in China is the production of standardized fiberboard.When making fiberboard,a steam blasting pretreatment without the addition of traditional adhesives has become increasingly popular because of its environmental friendliness and wide applicability.In this study,the steam explosion pretreatment of Moso bamboo and poplar was conducted.The steam explosion pressure and holding time were varied to determine the influence of these factors on fiber quality by investigating the morphology of the fiber,the mass ratio of the unexploded specimen at the end face,the chemical composition,and the tensile strength.The following conclusions were drawn:As the steam burst pressure and holding time increased,more cellulose and hemicellulose degradation occurred(the degradation of hemicellulose was greater than that of cellulose),the lignin content rose,and the fiber bundle strength decreased.The degradation of bamboo cellulose was slightly higher than that of poplar,and the degradation of poplar hemicellulose was significantly faster than that of bamboo.Furthermore,increasing the steam explosion pressure and pressure holding time could not effectively increase the lignin content.It is recommended to use a steam blasting pressure of 2.5 MPa or 3.0 MPa and a holding time of 180 s to perform steam blasting on bamboo and poplar specimens.
基金funded by the National Science Foundation of China(U20A20132)the National Key Scientific Research Project(2016YFC0204302)+1 种基金the Dalian Institute of Chemical Physics(DICP I201937)the K.C.Wong Education Foundation。
文摘DAC CO_(2)capture is gaining wide attention as one of the most difficult carbon approaches to tackle climate change.In this work,different pore-size silica spheres were grafted using different amine groups such as APTES,APTMS,and Diamine.Herein,all samples based on the wet and dry grafting method were used for CO_(2)adsorption isotherm at room temperature and pressure(298 K and 1 bar).The sample based on the wet grafting(Silica-APTES-W)sample shows the highest CO_(2)uptake 1.67 mmol/g.Also,the adsorption isotherm of the Silica-APTES-W sample was showed a high capacity of CO_(2)1.2 mmol/g at 25℃,which describes the strong physical interaction between CO_(2)and amine.The isosteric adsorption of Silica-APTES-W also confirmed that the physical adsorption was dominant because of low adsorption heat ranging from 23 to 37 k J/mol.Also,the fixed bed experiment was conducted with 2000 ppm CO_(2)that obtains the optimal working capacity 4.5 m L/g with the lowest regeneration temperature 90℃.It was shown that Silica-APTES-W sample was superior performance for DAC CO_(2)capture in practical applications.