期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Equilibrium reconstruction method for self-organized plasmas on reversed field pinches with polarimeter-interferometer
1
作者 Yuhua HUANG Ke LIU +17 位作者 Wenzhe MAO Caoxiang ZHU Tao LAN yiming zu Yongkang ZHOU Xingkang WANG Peng DENG Li WANG Pai PENG Adi LIU Chu ZHOU Haifeng LIU Hong LI Jinlin XIE Yuhong XU Weixing DING Wandong LIU Ge ZHUANG 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第12期31-40,共10页
In the reversed field pinch(RFP),plasmas exhibit various self-organized states.Among these,the three-dimensional(3D)helical state known as the“quasi-single-helical”(QSH)state enhances RFP confinement.However,accurat... In the reversed field pinch(RFP),plasmas exhibit various self-organized states.Among these,the three-dimensional(3D)helical state known as the“quasi-single-helical”(QSH)state enhances RFP confinement.However,accurately describing the equilibrium is challenging due to the presence of 3D structures,magnetic islands,and chaotic regions.It is difficult to obtain a balance between the available diagnostic and the real equilibrium structure.To address this issue,we introduce KTX3DFit,a new 3D equilibrium reconstruction code specifically designed for the Keda Torus eXperiment(KTX)RFP.KTX3DFit utilizes the stepped-pressure equilibrium code(SPEC)to compute 3D equilibria and uses polarimetric interferometer signals from experiments.KTX3DFit is able to reconstruct equilibria in various states,including axisymmetric,doubleaxis helical(DAx),and single-helical-axis(SHAx)states.Notably,this study marks the first integration of the SPEC code with internal magnetic field data for equilibrium reconstruction and could be used for other 3D configurations. 展开更多
关键词 equilibrium reconstruction polarimeter-interferometer multi-region relaxed MHD 3D self-organized states reversed field pinch
下载PDF
Development of a compact torus injection system for the Keda Torus eXperiment 被引量:3
2
作者 Chen CHEN Tao LAN +19 位作者 Chijin XIAO Ge ZHUANG Defeng KONG Shoubiao ZHANG Sen ZHANG Weixing DING Zhengwei WU Wenzhe MAO Jie WU Hangqi XU Jiaren WU yiming zu Dong ZHANG Zian WEI Xiaohui WEN Chu ZHOU Ahdi LIU Jinlin XIE Hong LI Wandong LIU 《Plasma Science and Technology》 SCIE EI CAS CSCD 2022年第4期114-123,共10页
A compact torus injection system,KTX-CTI,has been developed for the planned injection experiments on the Keda Torus e Xperiment(KTX)reversed field pinch(RFP)device to investigate the physics and engineering issues ass... A compact torus injection system,KTX-CTI,has been developed for the planned injection experiments on the Keda Torus e Xperiment(KTX)reversed field pinch(RFP)device to investigate the physics and engineering issues associated with interaction between a compact torus(CT)and RFP.The key interests include fueling directly into the reactor center,confinement improvement,and the injection of momentum and helicity into the RFP discharges.The CT velocity and mass have been measured using a multichannel optical fiber interferometer,and for the first time the time evolution of the CT density profile during CT propagation is obtained.The effects of discharge parameters on the number of injected particles,CT velocity and CT density have been characterized:the maximum hydrogen CT plasma mass,m,CTis 50μg,corresponding to 30%of the mass in a typical KTX plasma;the CT velocity exceeds 120 km s-1.It is observed for the first time that multiple CTs can be produced and emitted during a very short period(<100μs)in one discharge,which is significant for the future study of repetitive CT injection,even with an ultra-high frequency. 展开更多
关键词 compact torus injection central fueling reversed field pinch
下载PDF
Construction of an Hα diagnostic system and its application to determine neutral hydrogen densities on the Keda Torus eXperiment
3
作者 Junfeng Zhu Tao Lan +18 位作者 Ge Zhuang Tijian Deng Jie Wu Hangqi Xu Chen Chen Sen Zhang Jiaren Wu yiming zu Hong Li Jinlin Xie Ahdi Liu Zixi Liu Zhengwei Wu Hai Wang Xiaohui Wen Haiyang Zhou Chijin Xiao Weixing Ding Wandong Liu 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第10期428-434,共7页
A 10-channel Hα diagnostic system has been designed with the rapid response rate of 300 kHz, spatial resolution of about 40 mm, and overlap between adjacent channels of about 3%, and it has been implemented successfu... A 10-channel Hα diagnostic system has been designed with the rapid response rate of 300 kHz, spatial resolution of about 40 mm, and overlap between adjacent channels of about 3%, and it has been implemented successfully on Keda Torus eXperiment(KTX), a newly constructed, reversed field pinch(RFP) experimental device at the University of Science and Technology of China(USTC). This diagnostic system is a very important tool for the initial KTX operations. It is compact,with an aperture slit replacing the traditional optical lens system. A flexural interference filter is designed to prevent the center wavelength from shifting too much as the increase of angle from vertical incidence. To eliminate the stray light,the interior of the system is covered with the black aluminum foil having a very high absorptivity. Using the Hαemission data, together with the profiles of electron temperature and density obtained from the Langmuir probe, the neutral density profiles have been calculated for KTX plasmas. The rapid response rate and good spatial resolution of this Hαdiagnostic system will be beneficial for many studies in RFP plasma physics. 展开更多
关键词 DIAGNOSTIC NEUTRAL density Keda TORUS eXperiment(KTX) device
原文传递
Fast radial scanning probe system on KTX
4
作者 Tijian DENG Tao LAN +22 位作者 Mingsheng TAN Junfeng ZHU Jie WU Hangqi XU Chen CHEN Yolbarsop ADIL Sen ZHANG Jiaren WU yiming zu Wenzhe MAO Hong LI Jinlin Xie Ahdi LIU Zixi LIU Zhengwei WU Hai WANG Xiaohui WEN Haiyang ZHOU Zian WEI Chijin XIAO Weixing DING Ge ZHUANG Wandong LIU 《Plasma Science and Technology》 SCIE EI CAS CSCD 2020年第4期97-104,共8页
A fast radial scanning probe system was constructed for the Keda Torus eXperiment(KTX)to measure the profiles of boundary plasma parameters such as floating potential,electron density,temperature,transport fluxes,etc.... A fast radial scanning probe system was constructed for the Keda Torus eXperiment(KTX)to measure the profiles of boundary plasma parameters such as floating potential,electron density,temperature,transport fluxes,etc.The scanning probe system is driven by slow and fast motion mechanisms,corresponding to the stand-by movement of a stepping motor and the fast scanning movement of a high-torque servo-motor,respectively.In fast scanning,the scanner drives the probe radially up to 20 cm at a maximum velocity of 4.0 m s-1.A noncontact magnetic grating ruler with a high spatial resolution of 5μm is used for the displacement measurement.New scanning probe can reach the center of plasmas rapidly.The comparison of plasma floating potential profiles obtained by a fixed radial rake probe and the single scanning probe suggests that the high-speed scanning probe system is reliable for measuring edge plasma parameter profiles on the KTX device. 展开更多
关键词 RADIAL SCANNING probe high-speed MOVEMENT NONCONTACT magnetic GRATING RULER
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部