期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
In-situ coupling construction of interface bridge to enhance electrochemical stability of all solid-state lithium metal batteries
1
作者 Qianwei Zhang Rong yang +7 位作者 Chao Li Lei Mao Bohai Wang Meng Luo yinglin yan Yiming Zou Lisheng Zhong Yunhua Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期18-26,I0003,共10页
Polymer-based composite electrolytes composed of three-dimensional Li_(6.4)La_(3)Zr_(2)Al_(0.2)O_(12)(3D-LLZAO)have attracted increasing attention due to their continuous ion conduction and satisfactory mechanical pro... Polymer-based composite electrolytes composed of three-dimensional Li_(6.4)La_(3)Zr_(2)Al_(0.2)O_(12)(3D-LLZAO)have attracted increasing attention due to their continuous ion conduction and satisfactory mechanical properties.However,the organic/inorganic interface is incompatible,resulting in slow lithium-ion transport at the interface.Therefore,the compatibility of organic/inorganic interface is an urgent problem to be solved.Inspired by the concept of“gecko eaves”,polymer-based composite solid electrolytes with dense interface structures were designed.The bridging of organic/inorganic interfaces was established by introducing silane coupling agent(3-chloropropyl)trimethoxysilane(CTMS)into the PEO-3D-LLZAO(PL)electrolyte.The in-situ coupling reaction improves the interface affinity,strengthens the organic/inorganic interaction,reduces the interface resistance,and thus achieves an efficient interface ion transport network.The prepared PEO-3D-LLZAO-CTMS(PLC)electrolyte exhibits enhanced ionic conductivity of 6.04×10^(-4)S cm^(-1)and high ion migration number(0.61)at 60℃and broadens the electrochemical window(5.1 V).At the same time,the PLC electrolyte has good thermal stability and high mechanical properties.Moreover,the Li Fe PO_(4)|PLC|Li battery has excellent rate performance and cycling stability with a capacity decay rate of 2.2%after 100 cycles at 60℃and 0.1 C.These advantages of PLC membranes indicate that this design approach is indeed practical,and the in-situ coupling method provides a new approach to address interface compatibility issues. 展开更多
关键词 Organic/inorganic interphase Coupling effect Composite electrolyte Interface compatibility
下载PDF
Graphene quantum dots as sulfiphilic and lithiophilic mediator toward high stability and durable life lithium-sulfur batteries
2
作者 Chaojiang Fan Rong yang +8 位作者 Yong Huang Lei Mao Yuanyuan yang Le Gong Xin Dong yinglin yan Yiming Zou Lisheng Zhong Yunhua Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第10期254-266,I0008,共14页
The development of lithium-sulfur(Li-S) battery as one of the most attractive energy storage systems among lithium metal batteries is seriously hindered by low sulfur utilization, poor cycle stability and uneven redep... The development of lithium-sulfur(Li-S) battery as one of the most attractive energy storage systems among lithium metal batteries is seriously hindered by low sulfur utilization, poor cycle stability and uneven redeposition of Li anode. It is necessary to propose strategies to address the problems as well as improve the electrochemical performance. One of the effective solutions is to improve the sulfiphilicity of sulfur cathode and the lithiophilicity of the Li anode. Herein, we reported that a synergistic functional separator(graphene quantum dots(GQDs)-polyacrylonitrile(PAN) @polypropylene(PP) separator)improved the electrochemical activity of sulfur cathode as well as the stability of Li anode. GQDs induced uniform Li^(+)nucleation and deposition, which slowed down the passivation of Li anode and avoided shortcircuit. Further, three-dimensional network constructed by electrospinning nanofibers and the polar functional groups of GQDs could both effectively inhibit the shuttle of LiPSs and improve the sulfur utilization. The stability of Li-S battery was improved by the synergistic effect. In addition, GQDs and electrospinning nanofibers protector increased lifetime of separators. Benefiting from the unique design strategy, Li//Li symmetric battery with GQDs-PAN@PP separators exhibited stably cycling for over 600 h. More importantly, the Li-S full batteries based GQDs-PAN@PP separators enabled high stability and desirable sulfur electrochemistry, including high reversibility of 558.09 mA h g^(-1)for 200 cycles and durable life with a low fading rate of 0.075% per cycle after 500 cycles at 0.5 C. Moreover, an impressive areal capacity of 3.23 mA h cm^(-2)was maintained under high sulfur loading of 5.10 mg cm^(-2). This work provides a new insight for modification separator to improve the electrochemical performance of Li-S/Li metal batteries. 展开更多
关键词 Lithium-sulfur batteries Separator Graphene quantum dots Cycle stability Durable life
下载PDF
氧化石墨烯还原程度的控制 被引量:5
3
作者 陈利萍 杨蓉 +3 位作者 燕映霖 樊潮江 史忙忙 许云华 《化学进展》 SCIE CAS CSCD 北大核心 2018年第12期1930-1941,共12页
石墨烯作为只有一个原子层厚度的二维碳材料,具有优异的柔韧性、导电性等一系列优点,从而广泛应用于许多领域。氧化还原法是最常用且最有前景的石墨烯制备方法,然而在氧化过程中,大量含氧官能团的生成破坏了石墨烯的共轭结构,因此需要... 石墨烯作为只有一个原子层厚度的二维碳材料,具有优异的柔韧性、导电性等一系列优点,从而广泛应用于许多领域。氧化还原法是最常用且最有前景的石墨烯制备方法,然而在氧化过程中,大量含氧官能团的生成破坏了石墨烯的共轭结构,因此需要去除含氧官能团得到还原氧化石墨烯,以修复结构、恢复其高导电性。而许多领域运用石墨烯时,既需要其具有高导电性,又有一定量的含氧官能团或缺陷。因此,控制氧化石墨烯的还原程度尤为必要,既要充分利用含氧官能团的优点并保证石墨烯的导电性,又要根据石墨烯的应用需求,得到官能团种类及含量可控的还原氧化石墨烯,从而实现石墨烯材料的多元化应用。本文综述了近年来化学还原法、热还原(包括热退火和水/溶剂热还原)法和电化学还原法控制氧化石墨烯还原程度的研究现状,总结了几种方法的还原机制和效果以及部分还原氧化石墨烯的应用并进行了展望。 展开更多
关键词 石墨烯 化学还原 热退火 水热还原 溶剂热还原 电化学还原 还原程度
原文传递
过渡金属硫化物改性锂硫电池正极材料 被引量:6
4
作者 樊潮江 燕映霖 +3 位作者 陈利萍 陈世煜 蔺佳明 杨蓉 《化学进展》 SCIE CAS CSCD 北大核心 2019年第8期1166-1176,共11页
锂硫电池(LSBs)由于单质硫正极具有超高能量密度(2600 Wh/kg)和超高理论比容量(1675 mAh/g),且环境友好、成本低廉,被认为是最有前景的储能体系之一。然而,硫正极的绝缘性和严重体积膨胀以及多硫化物(LiPSs)的"穿梭效应"等问... 锂硫电池(LSBs)由于单质硫正极具有超高能量密度(2600 Wh/kg)和超高理论比容量(1675 mAh/g),且环境友好、成本低廉,被认为是最有前景的储能体系之一。然而,硫正极的绝缘性和严重体积膨胀以及多硫化物(LiPSs)的"穿梭效应"等问题导致活性物质利用率低、循环稳定性差及电化学反应动力不足,严重阻碍了LSBs的商业化发展。最新研究表明,过渡金属硫化物作为载体或添加剂能够显著改善LSBs正极材料的电化学性能。本文从等效/共正极作用、导电性增强作用、LiPSs吸附作用和电化学反应催化作用四个方面梳理了过渡金属硫化物在LSBs正极材料中的改性机理,并指出多元过渡金属硫化物复合﹑纳米结晶和量子化作为增加比表面积和活性位点的方法是过渡金属硫化物用于锂硫电池正极材料的重要发展方向,可大幅提升LSBs的电化学性能。 展开更多
关键词 锂硫电池 过渡金属硫化物 电化学性能 穿梭效应 吸附作用 催化作用
原文传递
石墨烯量子点在储能器件中的应用 被引量:4
5
作者 龚乐 杨蓉 +3 位作者 刘瑞 陈利萍 燕映霖 冯祖飞 《化学进展》 SCIE CAS CSCD 北大核心 2019年第7期1020-1030,共11页
石墨烯量子点(GQDs)作为新型碳基材料,由于其纳米级小尺寸而具有比表面积大、导电性高、透明性好、荧光性能独特等优点,是一种极具潜力的储能器件电极材料。GQDs与金属化合物、碳材料等形成具有三维空间结构的复合材料,有利于电子扩散... 石墨烯量子点(GQDs)作为新型碳基材料,由于其纳米级小尺寸而具有比表面积大、导电性高、透明性好、荧光性能独特等优点,是一种极具潜力的储能器件电极材料。GQDs与金属化合物、碳材料等形成具有三维空间结构的复合材料,有利于电子扩散和离子传输,大幅度改善GQDs作为电极材料的实际应用性能。异原子掺杂型GQDs可提供较多活性位点,提高活性物质利用率。本文介绍了GQDs的合成策略,主要分为自上而下和自下而上法。不同制备方法对GQDs的粒径大小、表面缺陷位点和荧光特性等的影响也不尽相同。通过阐述近几年GQDs、掺杂型GQDs及其复合物在超级电容器、锂离子电池、太阳能电池等能源器件方面的应用实例,表明具有量子限域效应和边界效应的GQDs基材料在新型储能器件中有巨大的应用潜力;通过深层剖析GQDs复合物的空间结构对储能器件电化学性能的影响,为今后深入研究奠定基础。此外,指出未来GQDs的发展方向是寻找快速、绿色环保的大批量合成方法,均匀、有效的掺杂或复合以及构建独特空间结构的电极材料,进一步提高其应用于储能器件时的电化学性能。 展开更多
关键词 石墨烯量子点 异原子掺杂 复合材料 储能器件
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部