Stearic acid modified tourmaline powder had been investigated to improve the compatibility and dispersed stability between tourmaline and polymer matrix. The experimental results indicated that the activation index wa...Stearic acid modified tourmaline powder had been investigated to improve the compatibility and dispersed stability between tourmaline and polymer matrix. The experimental results indicated that the activation index was 100% and contact angle reached 120° when the ratio of the ore slurry is 5:50, the dosage of stearic acid and p-toluenesulfonic acid is 10% and 0.5% (of tourmaline powder’s quantity) respectively with reaction at 80°C for 6.0 h, and the modified tourmaline exhibited an excellent hydrophobic property. The introduction of stearic groups reduced the reunion of tourmaline particles clearly and improved the dispersivity in polymers, and the amount of negative ions released of modified tourmaline increased obviously for both modified tourmaline powders and its composite with polyamide-66 compared to the unmodified tourmaline. Moreover, the structure of modified tourmaline was also characterized by means of Fourier Transform infrared spectroscopy, X-ray diffraction, thermal gravimetric analysis, scanning electron microscope.展开更多
文摘Stearic acid modified tourmaline powder had been investigated to improve the compatibility and dispersed stability between tourmaline and polymer matrix. The experimental results indicated that the activation index was 100% and contact angle reached 120° when the ratio of the ore slurry is 5:50, the dosage of stearic acid and p-toluenesulfonic acid is 10% and 0.5% (of tourmaline powder’s quantity) respectively with reaction at 80°C for 6.0 h, and the modified tourmaline exhibited an excellent hydrophobic property. The introduction of stearic groups reduced the reunion of tourmaline particles clearly and improved the dispersivity in polymers, and the amount of negative ions released of modified tourmaline increased obviously for both modified tourmaline powders and its composite with polyamide-66 compared to the unmodified tourmaline. Moreover, the structure of modified tourmaline was also characterized by means of Fourier Transform infrared spectroscopy, X-ray diffraction, thermal gravimetric analysis, scanning electron microscope.