Antimicrobial photodynamic therapy(aPDT)has been considered a noninvasive and effective modality against the bacterial infection of peri‑implantitis,especially the aPDT triggered by near-infrared(NIR)light due to the ...Antimicrobial photodynamic therapy(aPDT)has been considered a noninvasive and effective modality against the bacterial infection of peri‑implantitis,especially the aPDT triggered by near-infrared(NIR)light due to the large penetration depth in tissue.However,the complexity of hypoxia microenvironments and the distance of aPDT sterilization still pose challenges before realizing the aPDT clinical application.Due to the long lifespan and transmission distance of therapeutic gas molecules,we design a multi-functional gas generator that combines aPDT as well as O_(2) and CO gas release function,which can solve the problem of hypoxia(O_(2))in PDT and the problem of inflammation regulation(CO)in the distal part of peri‑implant inflammation under near-infrared(NIR)irradiation.In the composite nanoplatform that spin-coated on the surface of titanium implants,up-conversion nanoparticles(UCNPs)were involved in converting the NIR to visible,which further excites the partially oxidized stannic sulfide(SnS_(2)),realizing the therapeutic gas release.Indocyanine green(ICG)was further integrated to enhance the aPDT performance(Ti-U@SnS_(2)/I).Therefore,reactive oxygen species(ROS),CO,and O_(2) can be controllably administered via a composite nano-platform mediated by a single NIR light(808 nm).This implant surface modification strategy could achieve great self-enhancement antibacterial effectiveness and regulate the lingering questions,such as relieving the anoxic microenvironment and reaching deep infection sites,providing a viable antibiotic-free technique to combat peri‑implantitis.展开更多
A stimuli-responsive supramolecular polymer network(G-(CN)_(2)⊂BXDSP5)with aggregation-induced emission(AIE)properties has been efficiently constructed by host-guest interactions between pillar[5]arene derivative BXDS...A stimuli-responsive supramolecular polymer network(G-(CN)_(2)⊂BXDSP5)with aggregation-induced emission(AIE)properties has been efficiently constructed by host-guest interactions between pillar[5]arene derivative BXDSP5 and a homoditopic guest G-(CN)_(2),which shows not only excellent fluorescence properties due to the AIE effect but also desirable ion-sensing abilities in both solution and solid states,holding great potential in the applicable fluorescence detection for Fe^(3+).The resultant G-(CN)_(2)⊂BXDSP5 can be transformed into supramolecular polymer gel at high concentration via multiple noncovalent interactions,showing multi-stimuli-responsiveness in response to temperature change,mechanical force,and competitive agent.Meanwhile,the xerogel of supramolecular polymer material has been successfully used to remove Fe^(3+)from water with high adsorption efficiency.In addition,an ionresponsive film based on supramolecular polymer has also been developed,which can serve as a practical and convenient fluorescence test kit for detecting Fe^(3+).展开更多
基金the National Natural Science Foundation of China(Nos.82170998,82201102,62205122)the Postdoctoral Science Foundation Project of China(No.2022M721316)+4 种基金the General program of the Natural Science Foundation of Jilin Province(Nos.YDZJ202201ZYTS017,20220203145SF,20210203087SF,YDZJ202201ZYTS274,YDZJ202201ZYTS080)Hygiene and Health Appropriate Technology Promotion Project of Jilin Province(No.2020S014)the Science and Technology Project of Jilin Province Financial Department(Nos.jcsz202189321,jcsz2021893-15,Zkjc D105181350043103358)Science and Technology Project of Jilin Province Education Department(No.JJKH20221098KJ)the Health Department Research Projects of Jilin Province(No.2022JC076)for financial support.
文摘Antimicrobial photodynamic therapy(aPDT)has been considered a noninvasive and effective modality against the bacterial infection of peri‑implantitis,especially the aPDT triggered by near-infrared(NIR)light due to the large penetration depth in tissue.However,the complexity of hypoxia microenvironments and the distance of aPDT sterilization still pose challenges before realizing the aPDT clinical application.Due to the long lifespan and transmission distance of therapeutic gas molecules,we design a multi-functional gas generator that combines aPDT as well as O_(2) and CO gas release function,which can solve the problem of hypoxia(O_(2))in PDT and the problem of inflammation regulation(CO)in the distal part of peri‑implant inflammation under near-infrared(NIR)irradiation.In the composite nanoplatform that spin-coated on the surface of titanium implants,up-conversion nanoparticles(UCNPs)were involved in converting the NIR to visible,which further excites the partially oxidized stannic sulfide(SnS_(2)),realizing the therapeutic gas release.Indocyanine green(ICG)was further integrated to enhance the aPDT performance(Ti-U@SnS_(2)/I).Therefore,reactive oxygen species(ROS),CO,and O_(2) can be controllably administered via a composite nano-platform mediated by a single NIR light(808 nm).This implant surface modification strategy could achieve great self-enhancement antibacterial effectiveness and regulate the lingering questions,such as relieving the anoxic microenvironment and reaching deep infection sites,providing a viable antibiotic-free technique to combat peri‑implantitis.
基金the Jilin Province University Cooperative Construction Project-Special Funds for New Materials(No.SXGJSF2017-3)for financial support。
文摘A stimuli-responsive supramolecular polymer network(G-(CN)_(2)⊂BXDSP5)with aggregation-induced emission(AIE)properties has been efficiently constructed by host-guest interactions between pillar[5]arene derivative BXDSP5 and a homoditopic guest G-(CN)_(2),which shows not only excellent fluorescence properties due to the AIE effect but also desirable ion-sensing abilities in both solution and solid states,holding great potential in the applicable fluorescence detection for Fe^(3+).The resultant G-(CN)_(2)⊂BXDSP5 can be transformed into supramolecular polymer gel at high concentration via multiple noncovalent interactions,showing multi-stimuli-responsiveness in response to temperature change,mechanical force,and competitive agent.Meanwhile,the xerogel of supramolecular polymer material has been successfully used to remove Fe^(3+)from water with high adsorption efficiency.In addition,an ionresponsive film based on supramolecular polymer has also been developed,which can serve as a practical and convenient fluorescence test kit for detecting Fe^(3+).