Recent advances in artificial intelligence(AI)have sparked a surge in the application of computer vision(CV)in surgical video analysis.Laparoscopic surgery produces a large number of surgical videos,which provides a n...Recent advances in artificial intelligence(AI)have sparked a surge in the application of computer vision(CV)in surgical video analysis.Laparoscopic surgery produces a large number of surgical videos,which provides a new opportunity for improving of CV technology in laparoscopic surgery.AI-based CV techniques may leverage these surgical video data to develop real-time automated decision support tools and surgeon training systems,which shows a new direction in dealing with the shortcomings of laparoscopic surgery.The effectiveness of CV applications in surgical procedures is still under early evaluation,so it is necessary to discuss challenges and obstacles.The review introduced the commonly used deep learning algorithms in CV and described their usage in detail in four application scenes,including phase recognition,anatomy detection,instrument detection and action recognition in laparoscopic surgery.The currently described applications of CV in laparoscopic surgery are limited.Most of the current research focuses on the identification of workflow and anatomical structure,while the identification of instruments and surgical actions is still awaiting further breakthroughs.Future research on the use of CV in laparoscopic surgery should focus on applications in more scenarios,such as surgeon skill assessment and the development of more efficient models.展开更多
Deep simulations have gained widespread attention owing to their excellent acceleration performances.However,these methods cannot provide effective collision detection and response strategies.We propose a deep interac...Deep simulations have gained widespread attention owing to their excellent acceleration performances.However,these methods cannot provide effective collision detection and response strategies.We propose a deep interac-tive physical simulation framework that can effectively address tool-object collisions.The framework can predict the dynamic information by considering the collision state.In particular,the graph neural network is chosen as the base model,and a collision-aware recursive regression module is introduced to update the network parameters recursively using interpenetration distances calculated from the vertex-face and edge-edge tests.Additionally,a novel self-supervised collision term is introduced to provide a more compact collision response.This study extensively evaluates the proposed method and shows that it effectively reduces interpenetration artifacts while ensuring high simulation efficiency.展开更多
基金supported by the China Postdoctoral Science Foundation(2022M721514)the National Natural Science Foundation of China(82272132)+2 种基金the Guangdong Basic and Applied Basic Research Foundation(2021A1515011869)the Regional Joint Fund of Guangdong(Guangdong-Hong Kong-Macao Research Team Project,2021B1515130003)the Science and Technology Plan Project of Guangdong Province(2021A1414020003).
文摘Recent advances in artificial intelligence(AI)have sparked a surge in the application of computer vision(CV)in surgical video analysis.Laparoscopic surgery produces a large number of surgical videos,which provides a new opportunity for improving of CV technology in laparoscopic surgery.AI-based CV techniques may leverage these surgical video data to develop real-time automated decision support tools and surgeon training systems,which shows a new direction in dealing with the shortcomings of laparoscopic surgery.The effectiveness of CV applications in surgical procedures is still under early evaluation,so it is necessary to discuss challenges and obstacles.The review introduced the commonly used deep learning algorithms in CV and described their usage in detail in four application scenes,including phase recognition,anatomy detection,instrument detection and action recognition in laparoscopic surgery.The currently described applications of CV in laparoscopic surgery are limited.Most of the current research focuses on the identification of workflow and anatomical structure,while the identification of instruments and surgical actions is still awaiting further breakthroughs.Future research on the use of CV in laparoscopic surgery should focus on applications in more scenarios,such as surgeon skill assessment and the development of more efficient models.
基金This project was funded by Natural Science Foundation of Guangdong Province,No.2020B010165004。
文摘Deep simulations have gained widespread attention owing to their excellent acceleration performances.However,these methods cannot provide effective collision detection and response strategies.We propose a deep interac-tive physical simulation framework that can effectively address tool-object collisions.The framework can predict the dynamic information by considering the collision state.In particular,the graph neural network is chosen as the base model,and a collision-aware recursive regression module is introduced to update the network parameters recursively using interpenetration distances calculated from the vertex-face and edge-edge tests.Additionally,a novel self-supervised collision term is introduced to provide a more compact collision response.This study extensively evaluates the proposed method and shows that it effectively reduces interpenetration artifacts while ensuring high simulation efficiency.