Multifunctional switchable materials are attracting tremendous interest because of their great application potential in signal processing,information encryption,and smart devices.Here,we reported an organic-inorganic ...Multifunctional switchable materials are attracting tremendous interest because of their great application potential in signal processing,information encryption,and smart devices.Here,we reported an organic-inorganic hybrid thermochromic ferroelastic crystal,[TMIm][CuCl_(4)](TMIm=1,1,3,3-tetramethylimidazolidinium),which undergoes two reversible phase transitions at 333 K and 419 K,respectively.Intriguingly,these three phases experience a remarkable ferroelastic-paraelastic-ferroelastic(2/m-mmm-2/m)transition,which remains relatively unexplored in ferroelastics.Moreover,the ferroelastic domains can be simultaneously switched under temperature and stress stimuli.Meanwhile,[TMIm][CuCl_(4)]exhibits thermochromic phenomenon,endowing it with extra spectral encryption possibilities during information processing.Combined with dielectric switching behavior,[TMIm][Cu Cl_(4)]are promising for practical applications in memory devices,next-generation sensors,and encryption technology.展开更多
基金supported by the National Natural Science Foundation of China(Nos.21975114,11904151 and 22105094)。
文摘Multifunctional switchable materials are attracting tremendous interest because of their great application potential in signal processing,information encryption,and smart devices.Here,we reported an organic-inorganic hybrid thermochromic ferroelastic crystal,[TMIm][CuCl_(4)](TMIm=1,1,3,3-tetramethylimidazolidinium),which undergoes two reversible phase transitions at 333 K and 419 K,respectively.Intriguingly,these three phases experience a remarkable ferroelastic-paraelastic-ferroelastic(2/m-mmm-2/m)transition,which remains relatively unexplored in ferroelastics.Moreover,the ferroelastic domains can be simultaneously switched under temperature and stress stimuli.Meanwhile,[TMIm][CuCl_(4)]exhibits thermochromic phenomenon,endowing it with extra spectral encryption possibilities during information processing.Combined with dielectric switching behavior,[TMIm][Cu Cl_(4)]are promising for practical applications in memory devices,next-generation sensors,and encryption technology.