期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于病例队列设计的平均处理效应的估计
1
作者 曹永秀 余吉昌 《数学学报(中文版)》 CSCD 北大核心 2022年第4期751-762,共12页
病例队列设计因为具有成本效益而被广泛应用于流行病学和生物医学的研究中.对于病例队列设计,现有的统计方法主要集中在如何得到回归参数的相合及有效的估计上,然而很少有工作估计非随机化处理的因果效应.本文基于病例队列设计数据提出... 病例队列设计因为具有成本效益而被广泛应用于流行病学和生物医学的研究中.对于病例队列设计,现有的统计方法主要集中在如何得到回归参数的相合及有效的估计上,然而很少有工作估计非随机化处理的因果效应.本文基于病例队列设计数据提出了一种有效的估计平均处理效应的方法,建立了所提估计量的相合性和渐近正态性,并通过仿真研究考察了其在有限样本下的表现.最后,我们将所提方法应用于真实数据的分析中. 展开更多
关键词 平均处理效应 病例队列设计 Kaplan-Meier估计 观测性研究 倾向得分
原文传递
An Alternating Direction Method of Multipliers for MCP-penalized Regression with High-dimensional Data 被引量:3
2
作者 Yue yong SHI Yu Ling JIAO +1 位作者 yong xiu cao Yan Yan LIU 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2018年第12期1892-1906,共15页
The minimax concave penalty (MCP) has been demonstrated theoretically and practical- ly to be effective in nonconvex penalization for variable selection and parameter estimation. In this paper, we develop an efficie... The minimax concave penalty (MCP) has been demonstrated theoretically and practical- ly to be effective in nonconvex penalization for variable selection and parameter estimation. In this paper, we develop an efficient alternating direction method of multipliers (ADMM) with continuation algorithm for solving the MCP-penalized least squares problem in high dimensions. Under some mild conditions, we study the convergence properties and the Karush-Kuhn-Tucker (KKT) optimality con- ditions of the proposed method. A high-dimensional BIC is developed to select the optimal tuning parameters. Simulations and a real data example are presented to illustrate the efficiency and accuracy of the proposed method. 展开更多
关键词 Alternating direction method of multipliers coordinate descent CONTINUATION high-dimen-sional BIC minimax concave penalty penalized least squares
原文传递
Estimating Survival Treatment Effects with Covariate Adjustment Using Propensity Score 被引量:1
3
作者 yong xiu cao Xin Cheng ZHANG Ji Chang YU 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2022年第11期2057-2068,共12页
Propensity score is widely used to estimate treatment effects in observational studies.The covariate adjustment using propensity score is the most straightforward method in the literature of causal inference.In this a... Propensity score is widely used to estimate treatment effects in observational studies.The covariate adjustment using propensity score is the most straightforward method in the literature of causal inference.In this article,we estimate the survival treatment effect with covariate adjustment using propensity score in the semiparametric accelerated failure time model.We establish the asymptotic properties of the proposed estimator by simultaneous estimating equations.We conduct simulation studies to evaluate the finite sample performance of the proposed method.A real data set from the German Breast Cancer Study Group is analyzed to illustrate the proposed method. 展开更多
关键词 Accelerated failure time model covariate adjustment observational study propensity score simultaneous estimating equations
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部