期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Microstructure and mechanical property of A356 based composite by friction stir processing 被引量:3
1
作者 Don-Hyun CHOI Yong-Hwan kim +2 位作者 Byung-Wook AHN yong-il kim Seung-Boo JUNG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第2期335-340,共6页
Friction stir processing (FSP) was used to incorporate SiC particles into the matrix of A356 Al alloy to form composite material. Constant tool rotation speed of 1800 r/min and travel speed of 127 mm/min were used i... Friction stir processing (FSP) was used to incorporate SiC particles into the matrix of A356 Al alloy to form composite material. Constant tool rotation speed of 1800 r/min and travel speed of 127 mm/min were used in this study. The base metal (BM) shows the hypoeutectic Al-Si dendrite structure. The microstructure of the stir zone (SZ) is very different from that of the BM. The eutectic Si and SiC particles are dispersed homogeneously in primary Al solid solution. The thermo-mechanically affected zone (TMAZ), where the original microstructure is greatly deformed, is characterized by dispersed eutectic Si and SiC particles aligned along the rotational direction of the tool. The hardness of the SZ shows higher value than that of the BM because some defects are remarkably reduced and the eutectic Si and SiC particles are dispersed over the SZ. 展开更多
关键词 friction stir processing A356 alloy SiC powder eutectic Si
下载PDF
Effect of SiC particles on microstructure and mechanical property of friction stir processed AA6061-T4 被引量:1
2
作者 Don-Hyun CHOI yong-il kim +1 位作者 DAE-Up kim Seung-Boo JUNG 《中国有色金属学会会刊:英文版》 CSCD 2012年第S3期614-618,共5页
Friction stir processing of AA6061-T4 alloy with SiC particles was successfully carried out.SiC particles were uniformly dispersed into an AA6061-T4 matrix.Also SiC particles promoted the grain refinement of the AA606... Friction stir processing of AA6061-T4 alloy with SiC particles was successfully carried out.SiC particles were uniformly dispersed into an AA6061-T4 matrix.Also SiC particles promoted the grain refinement of the AA6061-T4 matrix by FSP.The mean grain size of the stir zone (SZ) with the SiC particles was obviously smaller than that of the stir zone without the SiC particles.The microhardness of the SZ with the SiC particles reached about HV80 due to the grain refinement and the distribution of the SiC particles. 展开更多
关键词 FRICTION STIR processing AA6061-T4 SiC PARTICLES PINNING EFFECT
下载PDF
Bimetallic zeolitic imidazolate framework-derived substrate-free anode with superior cyclability for high-capacity lithium-ion batteries 被引量:2
3
作者 Bhavana Joshi Edmund Samuel +3 位作者 yong-il kim Govindasami Periyasami Mostafizur Rahaman Sam S.Yoon 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第8期116-126,共11页
Freestanding carbon nanofibers loaded with bimetallic hollow nanocage structures were synthesized.The nanocages inherited the rhombic dodecahedral morphology of the zeolitic imidazolate framework(ZIF)precursors,ZIF-8 ... Freestanding carbon nanofibers loaded with bimetallic hollow nanocage structures were synthesized.The nanocages inherited the rhombic dodecahedral morphology of the zeolitic imidazolate framework(ZIF)precursors,ZIF-8 and ZIF-67.As anode materials for lithium-ion batteries(LIBs),the bimetallic nanocage-loaded freestanding carbon nanofibers effectively buffered volume expansions and alleviated pulverization through their different reduction and oxidation potentials.The higher capacities of the composite anodes arose via the formation of the Li_(x)Zn alloy and Li_(2)O by Zn and Co ions,respectively,and the enhanced conductivity conferred by the carbon nanofibers.A synergistic effect of the composite components toward the strong electrochemical performance(688 m A h·g^(-1)at 1200 m A·g^(-1))of the bimetallic nanocage-loaded fibers was demonstrated through the superior long-term stability of the anode(1048 m A h·g^(-1)after 300 cycles at 100 m A·g^(-1)),suggesting that the fabricated anode can be a promising material for use in portable LIBs. 展开更多
关键词 Carbon nanofiber Nanostructure Composite anode Zeolitic imidazolate framework
原文传递
Characterization of lattice parameters gradient of Cu(In1-xGax)Se2 absorbing layer in thin-film solar cell by glancing incidence X-ray diffraction technique
4
作者 yong-il kim Ki-Bok kim Miso kim 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第16期193-201,共9页
In or Ga gradients in the Cu(In1-xGax)Se2(CIGS)absorbing layer lead to change the lattice parameters of the absorbing layer,giving rise to the bandgap grading in the absorbing layer which is directly associated with t... In or Ga gradients in the Cu(In1-xGax)Se2(CIGS)absorbing layer lead to change the lattice parameters of the absorbing layer,giving rise to the bandgap grading in the absorbing layer which is directly associated with the degree of absorbing ability of the CIGS solar cell.We tried to characterize the depth profile of the lattice parameters of the CIGS absorbing layer using a glancing incidence X-ray diffraction(GIXRD)technique,and then investigate the bandgap grading of the CIGS absorbing layer.When the glancing incident angle increased from 0.50 to 5.00°,the a and c lattice parameters of the CIGS absorbing layer gradually decreased from 5.7776(3)to 5.6905(2)?,and 11.3917(3)to 11.2114(2)?,respectively.The depth profile of the lattice parameters as a function of the incident angle was consistent with vertical variation in the compositionof In or Ga with depth in the absorbing layer.The variation of the lattice parameters was due to the difference between the ionic radius of In and Ga co-occupying at the same crystallographic site.According to the results of the depth profile of the refined parameters using GIXRD data,the bandgap of the CIGS absorber layer was graded over a range of 1.222-1.532 eV.This approach allows to determine the In or Ga gradients in the CIGS absorbing layer,and to nondestructively guess the bandgap depth profile through the refinement of the lattice parameters using GIXRD data on the assumption that the changes of the lattice parameters or unit-cell volume follow a good approximation to Vegard’s law. 展开更多
关键词 Cu(In1-xGax)Se2 absorbing layer Depth profile Glancing incidence X-ray diffraction TECHNIQUE Bandgap grading Vegard’s law
原文传递
Wearable sensors and supercapacitors using electroplated-Ni/ZnO antibacterial fabric
5
作者 Taegun kim Chanwoo Park +3 位作者 Edmund P.Samuel yong-il kim Seongpil An Sam S.Yoon 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第5期254-264,共11页
Herein,nickel nanocones and zinc oxide nanosheets were electroplated onto a fabric to produce multifunctional(wearable,stretchable,washable,hydrophobic,and antibacterial)materials with sensing,heating,and supercapacit... Herein,nickel nanocones and zinc oxide nanosheets were electroplated onto a fabric to produce multifunctional(wearable,stretchable,washable,hydrophobic,and antibacterial)materials with sensing,heating,and supercapacitive properties.All these functionalities are integrated into a one-layered fabric that can be used as a portable intelligent electronic textile for potential application in healthcare monitoring,smart sportswear,and energy storage.Electroplated nickel enhances the electrical conductivity and thus increases the electron charge transfer for supercapacitor applications.The integration of ZnO with the Ni-plated fabric provides pseudocapacitance via redox reactions with the electrolyte.The resistance of the Ni/ZnO fabric changes in response to external stimuli such as temperature and strain.When voltage is applied,the fabric generates heat through Joule heating,demonstrating its potential application as winter sportswear.The superior mechanical durability of the fabric was confirmed through bending and stretching tests.The hydrophobic surface prevents viruses contained in liquid droplets from infiltrating the fabric.In addition,bacterial growth is inhibited because of the antibacterial properties of the Ni/ZnO fabric and because of Joule heating.The one-layered fabric integrated with such multiple functionalities is expected to be applicable in the development of next-generation portable and wearable electronic textiles in various industries. 展开更多
关键词 Multifunctional conductive fabric Fabric supercapacitor Fabric heater Thermal and strain sensors ELECTROPLATING
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部