期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Comparison of Gamma Pass Rate between the Dose-to-Water and Dose-to-Medium Reporting Modes for Patient-Specific QA Using a Helical Diode Array Dosimeter with a Fixed Phantom Density
1
作者 Hideaki Hirashima Mitsuhiro Nakamura +7 位作者 yoshitomo ishihara Nobutaka Mukumoto Mami Akimoto Tsuneyuki Tomita Yoshinori Hirose Kenji Kitsuda Takashi Ishigaki Takashi Mizowaki 《International Journal of Medical Physics, Clinical Engineering and Radiation Oncology》 2018年第1期74-86,共13页
Introduction: To compare the measured dose distributions to calculated ones in dose-to-water (Dw) and dose-to-medium (Dm) reporting modes for simple plans and patient-specific intensity modulated radiation therapy (IM... Introduction: To compare the measured dose distributions to calculated ones in dose-to-water (Dw) and dose-to-medium (Dm) reporting modes for simple plans and patient-specific intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) plans using ArcCHECK with a fixed phantom density. Methods: The recommended density value of 1.18 g/cm3 for Acuros XB and X-ray voxel Monte Carlo was assigned to ArcCHECK on CT images. A total of 45 simple plans, including a 1-field plan, a 3-field plan, a 4-field plan, a half-arc plan from 270° to 90°, and a full-arc plan, were assessed. Subsequently, the patient-specific 96 IMRT and VMAT plans were evaluated. Gamma analysis with a 3% normalized global dose error and a 3 mm distance-to-agreement criteria (γ3%G/3mm) was performed in the Dw and Dm. The change in γ3%G/3mm between Dw and Dm were statistically analyzed using JMPPro11 software. Results: The median values of γ3%G/3mm for all simple plans for Dw and Dm were 98.1% (range, 75.2% - 100%) and 95.5% (range, 23.7% - 100%), respectively (p 0.01). In the patient-specific IMRT and VMAT plans, the median values of γ3%G/3mm for Dw and Dm were 98.6% (range, 90.1% - 100%) and 90.5% (range, 38.5% - 97.2%), respectively (p 0.01). Conclusion: Our results showed that the calculated and measured dose distributions were in good agreement for Dw, but were not for Dm. From the viewpoint of the rationale of dosimetry, Dw shows better agreement with measured dose distribution when using the fixedphantom density recommended by the vendor. 展开更多
关键词 HELICAL Diode Array DOSIMETER Dose-to-Water Dose-to-Medium GAMMA Pass Rate
下载PDF
Investigation of Well-Balanced kV X-Ray Imaging Conditions between Skin Dose and Image Noise for Dynamic Tumor Tracking Irradiation
2
作者 Takahiro Nakai Akira Sawada +6 位作者 Hiroaki Tanabe Masaki Sueoka Sho Taniuchi Kenji Takayama Takehiro Shiinoki yoshitomo ishihara Masaki Kokubo 《International Journal of Medical Physics, Clinical Engineering and Radiation Oncology》 2017年第4期410-420,共11页
Purpose: The purposes of this study were to estimate accumulated kV X-ray imaging dose throughout dynamic tumor tracking (DTT) irradiation by Vero 4DRT system and to address an analytical skin dose formula for well-ba... Purpose: The purposes of this study were to estimate accumulated kV X-ray imaging dose throughout dynamic tumor tracking (DTT) irradiation by Vero 4DRT system and to address an analytical skin dose formula for well-balanced kV X-ray imaging conditions between skin dose and image noise. Method: First, skin dose was measured using kV X-ray tube, chamber, and water-equivalent phantoms. Next, imaging dose for six patients in DTT treatment was computed using log files. Subsequently, scattered dose ratio was calculated by amount of ionization in front of flat panel detector (FPD) for fields with size of maximum and the chamber for 0 - 200 mm-thickness phantoms and tube voltage of 60, 80, 100, 120 kV, respectively. Furthermore, image noise was computed from FPD images. Results: The skin dose was greater by a factor of 1.4 - 1.6 than those in Synergy XVI system. The image noise in FPD, ?was expressed as N = 0.045×(1/QFPDen)0.479, where QFPDen denotes amount of ionization in front of FPD. Then, skin dose, D (N, t, v) was formulated as (0.045/N)(1/0.479)/QFPDen/mAs (t, v) ×D/mAs (v), where QFPDen/mAs (t, v) and D/mAs (v) denote amount of ionization in front of FPD and skin dose per mAs, respectively. Using the formulae, it has been demonstrated that skin dose with 120 kV has become lower than any other tube voltage in this study. Conclusion: Using skin doses for the phantom, the skin dose throughout DTT irradiation was estimated as 0.50 Gy. Furthermore, skin dose by kV X-ray imaging was described as a function of image noise, phantom thickness, and tube voltage, suggesting image noise may be reduced with higher X-ray tube voltage in this phantom study. 展开更多
关键词 DYNAMIC Tumor Tracking IRRADIATION SKIN DOSE Vero4DRT
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部