Immunoglobulin (Ig) M production can be induced by the interaction of thymus-independent type-2 (TI-2) antigen (Ag) with B cell Ag receptors (BCRs) without the involvement of conventional T cells;for IgG production th...Immunoglobulin (Ig) M production can be induced by the interaction of thymus-independent type-2 (TI-2) antigen (Ag) with B cell Ag receptors (BCRs) without the involvement of conventional T cells;for IgG production through the same process, however, a second signal is required. Previous studies have reported that invariant natural killer T (iNKT) cells may be responsible for the second signal involved in IgG production. In the present study, we addressed whether human iNKT cells could participate in the production of Ig against TI-2 Ag in vitro. Two major distinct subsets of human iNKT cells, CD4<sup>+</sup> CD8β<sup>-</sup> (CD4) and CD4<sup>-</sup> CD8β<sup>-</sup> [double negative (DN)] cells, were generated from peripheral blood monocytes from a healthy volunteer. BCR engagement, triggered by anti-IgM antibody stimulation, examined here as a model of BCR engagement triggered by TI-2 Ag, induced abundant IgM production by B cells. Both CD4 and DN iNKT cells reduced IgM production and conversely enhanced IgG production in a dose-dependent manner. In addition, IgG production by CD19<sup>+</sup>CD27<sup>-</sup> (naïve) and CD19<sup>+</sup>CD27<sup>+</sup> (memory) B cells was predominantly promoted by DNiNKT cells rather than CD4 iNKT cells;nevertheless, IgM production by both B cell subsets was similarly reduced by either subset of iNKT cells. These results suggest that the DN iNKT subsets may preferentially promote Ig class switching by B cells upon stimulation with TI-2 Ag.展开更多
AIM: To investigate an association between N -acetyltransferase 2 (NAT2 )-haplotypes/diplotypes and adverse effects in Japanese pulmonary tuberculosis patients. METHODS: We studied 100 patients with pulmonary TB treat...AIM: To investigate an association between N -acetyltransferase 2 (NAT2 )-haplotypes/diplotypes and adverse effects in Japanese pulmonary tuberculosis patients. METHODS: We studied 100 patients with pulmonary TB treated with anti-TB drugs including INH. The frequencies and distributions of single nucleotide polymorphisms, haplotypes, and diplotypes of NAT2 were determined by the PCR-restriction fragment length polymorphism method, and the results were compared between TB patients with and without adverse effect, using multivariate logistic regression analysis.RESULTS: Statistical analysis revealed that the frequency of a variant haplotype, NAT2*6A , was signifi cantly increased in TB patients with hepatotoxicity, compared with those without hepatotoxicity [P = 0.001, odds ratio (OR) = 3.535]. By contrast, the frequency of a wild-type (major) haplotype, "NAT2*4", was signif icantly lower in TB patients with hepatotoxicity than those without hepatotoxicity (P < 0.001, OR = 0.265). There was no association between NAT2-haplotypes and skin rash or eosinophilia. CONCLUSION: The present study shows that NAT2 is one of the determinants of anti-TB drug-induced hepatotoxicity. Moreover, the haplotypes, NAT2*4 and NAT2*6A, are useful new biomarkers for predicting anti- TB drug-induced hepatotoxicity.展开更多
文摘Immunoglobulin (Ig) M production can be induced by the interaction of thymus-independent type-2 (TI-2) antigen (Ag) with B cell Ag receptors (BCRs) without the involvement of conventional T cells;for IgG production through the same process, however, a second signal is required. Previous studies have reported that invariant natural killer T (iNKT) cells may be responsible for the second signal involved in IgG production. In the present study, we addressed whether human iNKT cells could participate in the production of Ig against TI-2 Ag in vitro. Two major distinct subsets of human iNKT cells, CD4<sup>+</sup> CD8β<sup>-</sup> (CD4) and CD4<sup>-</sup> CD8β<sup>-</sup> [double negative (DN)] cells, were generated from peripheral blood monocytes from a healthy volunteer. BCR engagement, triggered by anti-IgM antibody stimulation, examined here as a model of BCR engagement triggered by TI-2 Ag, induced abundant IgM production by B cells. Both CD4 and DN iNKT cells reduced IgM production and conversely enhanced IgG production in a dose-dependent manner. In addition, IgG production by CD19<sup>+</sup>CD27<sup>-</sup> (naïve) and CD19<sup>+</sup>CD27<sup>+</sup> (memory) B cells was predominantly promoted by DNiNKT cells rather than CD4 iNKT cells;nevertheless, IgM production by both B cell subsets was similarly reduced by either subset of iNKT cells. These results suggest that the DN iNKT subsets may preferentially promote Ig class switching by B cells upon stimulation with TI-2 Ag.
基金by Grant-in-Aid for Scientif ic Research (Category B, No. 18390168) for K Tsukamoto by the Ministry of Education, Culture, Sports, Science and Technology of Japan
文摘AIM: To investigate an association between N -acetyltransferase 2 (NAT2 )-haplotypes/diplotypes and adverse effects in Japanese pulmonary tuberculosis patients. METHODS: We studied 100 patients with pulmonary TB treated with anti-TB drugs including INH. The frequencies and distributions of single nucleotide polymorphisms, haplotypes, and diplotypes of NAT2 were determined by the PCR-restriction fragment length polymorphism method, and the results were compared between TB patients with and without adverse effect, using multivariate logistic regression analysis.RESULTS: Statistical analysis revealed that the frequency of a variant haplotype, NAT2*6A , was signifi cantly increased in TB patients with hepatotoxicity, compared with those without hepatotoxicity [P = 0.001, odds ratio (OR) = 3.535]. By contrast, the frequency of a wild-type (major) haplotype, "NAT2*4", was signif icantly lower in TB patients with hepatotoxicity than those without hepatotoxicity (P < 0.001, OR = 0.265). There was no association between NAT2-haplotypes and skin rash or eosinophilia. CONCLUSION: The present study shows that NAT2 is one of the determinants of anti-TB drug-induced hepatotoxicity. Moreover, the haplotypes, NAT2*4 and NAT2*6A, are useful new biomarkers for predicting anti- TB drug-induced hepatotoxicity.