An umbilical free oriented hypersurfacex:M→Rnwith non-zero principal curvatures is called a Laguerre isoparametric hypersurface if its Laguerre form C=i Ciωi=iρ1(Ei(logρ)(r ri)Ei(r))ωi vanishes and Lague...An umbilical free oriented hypersurfacex:M→Rnwith non-zero principal curvatures is called a Laguerre isoparametric hypersurface if its Laguerre form C=i Ciωi=iρ1(Ei(logρ)(r ri)Ei(r))ωi vanishes and Laguerre shape operator S=ρ1(S 1 rid)has constant eigenvalues.Hereρ=i(r ri)2,r=r1+r2+···+rn 1n 1is the mean curvature radius andSis the shape operator ofx.{Ei}is a local basis for Laguerre metric g=ρ2III with dual basis{ωi}and III is the third fundamental form ofx.In this paper,we classify all Laguerre isoparametric hypersurfaces in Rn(n〉3)with two distinct non-zero principal curvatures up to Laguerre transformations.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.10826062)Natural Science Foundation of Fujian Province of China(Grant No.2012J01020)the Fundamental Research Funds for the Central Universities(Grant No.2011121040)
文摘An umbilical free oriented hypersurfacex:M→Rnwith non-zero principal curvatures is called a Laguerre isoparametric hypersurface if its Laguerre form C=i Ciωi=iρ1(Ei(logρ)(r ri)Ei(r))ωi vanishes and Laguerre shape operator S=ρ1(S 1 rid)has constant eigenvalues.Hereρ=i(r ri)2,r=r1+r2+···+rn 1n 1is the mean curvature radius andSis the shape operator ofx.{Ei}is a local basis for Laguerre metric g=ρ2III with dual basis{ωi}and III is the third fundamental form ofx.In this paper,we classify all Laguerre isoparametric hypersurfaces in Rn(n〉3)with two distinct non-zero principal curvatures up to Laguerre transformations.