Let f : M → M be a partially hyperbolic diffeomorphism on a closed Riemannian manifold with uniformly compact center foliation. We show that if the center foliation of f is of dimension one then the topological entr...Let f : M → M be a partially hyperbolic diffeomorphism on a closed Riemannian manifold with uniformly compact center foliation. We show that if the center foliation of f is of dimension one then the topological entropy is constant on a small C1 neighborhood of f.展开更多
基金supported by NSFC(No:11371120)GCCHB(No:GCC2014052)supported by NSFHB(No:A2014205154)
文摘Let f : M → M be a partially hyperbolic diffeomorphism on a closed Riemannian manifold with uniformly compact center foliation. We show that if the center foliation of f is of dimension one then the topological entropy is constant on a small C1 neighborhood of f.