BACKGROUND Diabetic cardiomyopathy(DCM),which is a complication of diabetes,poses a great threat to public health.Recent studies have confirmed the role of NLRP3(NOD-like receptor protein 3)activation in DCM developme...BACKGROUND Diabetic cardiomyopathy(DCM),which is a complication of diabetes,poses a great threat to public health.Recent studies have confirmed the role of NLRP3(NOD-like receptor protein 3)activation in DCM development through the inflammatory response.Teneligliptin is an oral hypoglycemic dipeptidyl peptidase-IV inhibitor used to treat diabetes.Teneligliptin has recently been reported to have anti-inflammatory and protective effects on myocardial cells.AIM To examine the therapeutic effects of teneligliptin on DCM in diabetic mice.METHODS Streptozotocin was administered to induce diabetes in mice,followed by treatment with 30 mg/kg teneligliptin.RESULTS Marked increases in cardiomyocyte area and cardiac hypertrophy indicator heart weight/tibia length reductions in fractional shortening,ejection fraction,and heart rate;increases in creatine kinase-MB(CK-MB),aspartate transaminase(AST),and lactate dehydrogenase(LDH)levels;and upregulated NADPH oxidase 4 were observed in diabetic mice,all of which were significantly reversed by teneligliptin.Moreover,NLRP3 inflammasome activation and increased release of interleukin-1βin diabetic mice were inhibited by teneligliptin.Primary mouse cardiomyocytes were treated with high glucose(30 mmol/L)with or without teneligliptin(2.5 or 5μM)for 24 h.NLRP3 inflammasome activation.Increases in CKMB,AST,and LDH levels in glucose-stimulated cardiomyocytes were markedly inhibited by teneligliptin,and AMP(p-adenosine 5‘-monophosphate)-p-AMPK(activated protein kinase)levels were increased.Furthermore,the beneficial effects of teneligliptin on hyperglycaemia-induced cardiomyocytes were abolished by the AMPK signaling inhibitor compound C.CONCLUSION Overall,teneligliptin mitigated DCM by mitigating activation of the NLRP3 inflammasome.展开更多
An anion-rich electric double layer(EDL)region is favorable for fabricating an inorganic-rich solid-electrolyte interphase(SEI)towards stable lithium metal anode in ester electrolyte.Herein,cetyltrimethylammonium brom...An anion-rich electric double layer(EDL)region is favorable for fabricating an inorganic-rich solid-electrolyte interphase(SEI)towards stable lithium metal anode in ester electrolyte.Herein,cetyltrimethylammonium bromide(CTAB),a cationic surfactant,is adopted to draw more anions into EDL by ionic interactions that shield the repelling force on anions during lithium plating.In situ electrochemical surface-enhanced Raman spectroscopy results combined with molecular dynamics simulations validate the enrichment of NO_(3)^(−)/FSI−anions in the EDL region due to the positively charged CTA^(+).In-depth analysis of SEI structure by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry results confirmed the formation of the inorganic-rich SEI,which helps improve the kinetics of Li^(+)transfer,lower the charge transfer activation energy,and homogenize Li deposition.As a result,the Li||Li symmetric cell in the designed electrolyte displays a prolongated cycling time from 500 to 1300 h compared to that in the blank electrolyte at 0.5 mA cm^(-2) with a capacity of 1 mAh cm^(-2).Moreover,Li||LiFePO_(4) and Li||LiCoO_(2) with a high cathode mass loading of>10 mg cm^(-2) can be stably cycled over 180 cycles.展开更多
We conduct a statistical analysis of the hardness ratio(HR)for bright sources in the 4 yr Galactic Plane Scanning Survey catalog of Insight-HXMT.Depending on the stable(variable)flux F_(s)(F_(v))or spectrum S_(s)(S_(v...We conduct a statistical analysis of the hardness ratio(HR)for bright sources in the 4 yr Galactic Plane Scanning Survey catalog of Insight-HXMT.Depending on the stable(variable)flux F_(s)(F_(v))or spectrum S_(s)(S_(v))of each source,the bright sources are classified into three groups:F_(v)&S_(v),F_(v)&S_(s),and F_(s)&_(s).Our study of the HR characteristics in different types of sources reveals that accretion-powered neutron star(NS)low-mass X-ray binaries(LMXBs)exhibit softer energy spectra than NS high-mass X-ray binaries(HMXBs),but harder energy spectra than black hole binaries in most cases.This difference is probably due to their different magnetic field strengths.Additionally,Fv&Sv LMXBs tend to be harder than Fv&Ss LMXBs below 7 keV,while the opposite is true for HMXBs.Our results suggest that LMXBs may dominate unclassified sources,and NS binaries are likely to be the primary type of X-ray binaries with ambiguous compact stars.By comparing the HR of transient sources in their outburst and low-flux states,it is found that the averaged HR of four sources in the two states are roughly comparable within uncertainties.We also investigate the spatial properties of the three groups and find that Fv&Sv sources are mainly located in the longitude of-20°<l<9°,Fv&Ss sources cross the Galactic Plane,and Fs&Ss sources are predominantly concentrated in 19°<l<42°.In addition,analyzing the HR spatial distributions shows the absorption of soft X-rays(primarily below 2 keV)in the Galactic Plane.展开更多
Infections caused by intracellular bacterial pathogens are difficult to treat since most antibiotics have low cell permeability and undergo rapid degradation within cells.The rapid development and dissemination of ant...Infections caused by intracellular bacterial pathogens are difficult to treat since most antibiotics have low cell permeability and undergo rapid degradation within cells.The rapid development and dissemination of antimicrobial–resistant strains have exacerbated this dilemma.With the increasing knowledge of host–pathogen interactions,especially bacterial strategies for survival and proliferation within host cells,host-directed therapy(HDT)has attracted increased interest and has emerged as a promising antiinfection method for treating intracellular infection.Herein,we applied a cell-based screening approach to a US Food and Drug Administration(FDA)-approved drug library to identify compounds that can inhibit the intracellular replication of Salmonella Typhimurium(S.Typhimurium).This screening allowed us to identify the antidiarrheal agent loperamide(LPD)as a potent inhibitor of S.Typhimurium intracellular proliferation.LPD treatment of infected cells markedly promoted the host autophagic response and lysosomal activity.A mechanistic study revealed that the increase in host autophagy and elimination of intracellular bacteria were dependent on the high expression of glycoprotein nonmetastatic melanoma protein B(GPNMB)induced by LPD.In addition,LPD treatment effectively protected against S.Typhimurium infection in Galleria mellonella and mouse models.Thus,our study suggested that LPD may be useful for the treatment of diseases caused by intracellular bacterial pathogens.Moreover,LPD may serve as a promising lead compound for the development of anti-infection drugs based on the HDT strategy.展开更多
X-ray observations play a crucial role in time-domain astronomy.The Einstein Probe(EP),a recently launched X-ray astronomical satellite,emerges as a forefront player in the field of time-domain astronomy and high-ener...X-ray observations play a crucial role in time-domain astronomy.The Einstein Probe(EP),a recently launched X-ray astronomical satellite,emerges as a forefront player in the field of time-domain astronomy and high-energy astrophysics.With a focus on systematic surveys in the soft X-ray band,EP aims to discover high-energy transients and monitor variable sources in the universe.To achieve these objectives,a quick and reliable classification of observed sources is essential.In this study,we developed a machine learning classifier for autonomous source classification using data from the EP-WXT Pathfinder—Lobster Eye Imager for Astronomy(LEIA)and EP-WXT simulations.The proposed Random Forest classifier,built on selected features derived from light curves,energy spectra,and location information,achieves an accuracy of approximately 95%on EP simulation data and 98%on LEIA observational data.The classifier is integrated into the LEIA data processing pipeline,serving as a tool for manual validation and rapid classification during observations.This paper presents an efficient method for the classification of X-ray sources based on single observations,along with implications of most effective features for the task.This work facilitates rapid source classification for the EP mission and also provides valuable insights into feature selection and classification techniques for enhancing the efficiency and accuracy of X-ray source classification that can be adapted to other X-ray telescope data.展开更多
Aqueous Zn metal batteries(AZMBs)with intrinsic safety,high energy density and low cost have been regarded as promising electrochemical energy storage devices.However,the parasitic reaction on metallic Zn anode and th...Aqueous Zn metal batteries(AZMBs)with intrinsic safety,high energy density and low cost have been regarded as promising electrochemical energy storage devices.However,the parasitic reaction on metallic Zn anode and the incompatibility between electrode and electrolytes lead to the deterioration of electrochemical performance of AZMBs during the cycling.The critical point to achieve the stable cycling of AZMBs is to properly regulate the zinc ion solvated structure and transfer behavior between metallic Zn anode and electrolyte.In recent years,numerous achievements have been made to resolve the formation of Zn dendrite and interface incompatible issues faced by AZMBs via optimizing the sheath structure and transport capability of zinc ions at electrode-electrolyte interface.In this review,the challenges for metallic Zn anode and electrode-electrolyte interface in AZMBs including dendrite formation and interface characteristics are presented.Following the influences of different strategies involving designing advanced electrode structu re,artificial solid electrolyte interphase(SEI)on Zn anode and electrolyte engineering to regulate zinc ion solvated sheath structure and transport behavior are summarized and discussed.Finally,the perspectives for the future development of design strategies for dendrite-free Zn metal anode and long lifespan AZMBs are also given.展开更多
In this paper, the problem of abnormal spectrum usage between satellite spectrum sharing systems is investigated to support multi-satellite spectrum coexistence. Given the cost of monitoring, the mobility of low-orbit...In this paper, the problem of abnormal spectrum usage between satellite spectrum sharing systems is investigated to support multi-satellite spectrum coexistence. Given the cost of monitoring, the mobility of low-orbit satellites, and the directional nature of their signals, traditional monitoring methods are no longer suitable, especially in the case of multiple power level. Mobile crowdsensing(MCS), as a new technology, can make full use of idle resources to complete a variety of perceptual tasks. However, traditional MCS heavily relies on a centralized server and is vulnerable to single point of failure attacks. Therefore, we replace the original centralized server with a blockchain-based distributed service provider to enable its security. Therefore, in this work, we propose a blockchain-based MCS framework, in which we explain in detail how this framework can achieve abnormal frequency behavior monitoring in an inter-satellite spectrum sharing system. Then, under certain false alarm probability, we propose an abnormal spectrum detection algorithm based on mixed hypothesis test to maximize detection probability in single power level and multiple power level scenarios, respectively. Finally, a Bad out of Good(BooG) detector is proposed to ease the computational pressure on the blockchain nodes. Simulation results show the effectiveness of the proposed framework.展开更多
β-gallium oxide(β-Ga2O3),as the typical representative of the fourth generation of semiconductors,has attracted increasing attention owing to its ultra-wide bandgap,superior optical properties,and excellent toleranc...β-gallium oxide(β-Ga2O3),as the typical representative of the fourth generation of semiconductors,has attracted increasing attention owing to its ultra-wide bandgap,superior optical properties,and excellent tolerance to high temperature and radiation.Compared to the single crystals of other semiconductors,high-quality and large-size β-Ga_(2)O_(3) single crystals can be grown with low-cost melting methods,making them highly competitive.In this review,the growth process,defects,and dopants ofβ-Ga_(2)O_(3) are primarily discussed.Firstly,the growth process(e.g.,decomposition,crucible corrosion,spiral growth,and development)ofβ-Ga_(2)O_(3) single crystals are summarized and compared in detail.Then,the defects of β-Ga_(2)O_(3) single crystals and the influence of defects on Schottky barrier diode(SBD)devices are emphatically discussed.Besides,the influences of impurities and intrinsic defects on the electronic and optical properties ofβ-Ga_(2)O_(3) are also briefly discussed.Concluding this comprehensive analysis,the article offers a concise summary of the current state,challenges and prospects ofβ-Ga_(2)O_(3) single crystals.展开更多
As users’access to the network has evolved into the acquisition of mass contents instead of IP addresses,the IP network architecture based on end-to-end communication cannot meet users’needs.Therefore,the Informatio...As users’access to the network has evolved into the acquisition of mass contents instead of IP addresses,the IP network architecture based on end-to-end communication cannot meet users’needs.Therefore,the Information-Centric Networking(ICN)came into being.From a technical point of view,ICN is a promising future network architecture.Researching and customizing a reasonable pricing mechanism plays a positive role in promoting the deployment of ICN.The current research on ICN pricing mechanism is focused on paid content.Therefore,we study an ICN pricing model for free content,which uses game theory based on Nash equilibrium to analysis.In this work,advertisers are considered,and an advertiser model is established to describe the economic interaction between advertisers and ICN entities.This solution can formulate the best pricing strategy for all ICN entities and maximize the benefits of each entity.Our extensive analysis and numerical results show that the proposed pricing framework is significantly better than existing solutions when it comes to free content.展开更多
In Na-ion batteries,O3-type layered oxide cathode materials encounter challenges such as particle cracking,oxygen loss,electrolyte side reactions,and multi-phase transitions during the charge/discharge process.This st...In Na-ion batteries,O3-type layered oxide cathode materials encounter challenges such as particle cracking,oxygen loss,electrolyte side reactions,and multi-phase transitions during the charge/discharge process.This study focuses on surface coating with NiTiO_(3) achieved via secondary heat treatment using a coating precursor and the surface material.Through in-situ x-ray diffraction(XRD)and differential electrochemical mass spectrometry(DEMS),along with crystal structure characterizations of post-cycling materials,it was determined that the NiTiO_(3) coating layer facilitates the formation of a stable lattice structure,effectively inhibiting lattice oxygen loss and reducing side reaction with the electrolyte.This enhancement in cycling stability was evidenced by a capacity retention of approximately 74%over 300 cycles at 1 C,marking a significant 30%improvement over the initial sample.Furthermore,notable advancements in rate performance were observed.Experimental results indicate that a stable and robust surface structure substantially enhances the overall stability of the bulk phase,presenting a novel approach for designing layered oxide cathodes with higher energy density.展开更多
How to achieve synergistic improvement of permittivity(ε_(r))and breakdown strength(E_(b))is a huge challenge for polymer dielectrics.Here,for the first time,theπ-conjugated comonomer(MHT)can simultaneously promote ...How to achieve synergistic improvement of permittivity(ε_(r))and breakdown strength(E_(b))is a huge challenge for polymer dielectrics.Here,for the first time,theπ-conjugated comonomer(MHT)can simultaneously promote theε_(r)and E_(b)of linear poly(methyl methacrylate)(PMMA)copolymers.The PMMA-based random copolymer films(P(MMA-co-MHT)),block copolymer films(PMMA-b-PMHT),and PMMA-based blend films were prepared to investigate the effects of sequential structure,phase separation structure,and modification method on dielectric and energy storage properties of PMMA-based dielectric films.As a result,the random copolymer P(MMA-coMHT)can achieve a maximumε_(r)of 5.8 at 1 kHz owing to the enhanced orientation polarization and electron polarization.Because electron injection and charge transfer are limited by the strong electrostatic attraction ofπ-conjugated benzophenanthrene group analyzed by the density functional theory(DFT),the discharge energy density value of P(MMA-co-PMHT)containing 1 mol%MHT units with the efficiency of 80%reaches15.00 J cm^(-3)at 872 MV m^(-1),which is 165%higher than that of pure PMMA.This study provides a simple and effective way to fabricate the high performance of polymer dielectrics via copolymerization with the monomer of P-type semi-conductive polymer.展开更多
In this study,umami taste intensity(UTI)and umami taste components in chicken breast(CB)and chickenspices blends were characterized using sensory and instrumental analysis.Our main objective was to assess the aroma-um...In this study,umami taste intensity(UTI)and umami taste components in chicken breast(CB)and chickenspices blends were characterized using sensory and instrumental analysis.Our main objective was to assess the aroma-umami taste interactions in different food matrices and reconcile the aroma-taste perception to assist future product development.The impact of key aroma,including vegetable-note"2-pentylfuran",meaty"methional",green"hexanal",and spicy-note-estragole and caryophyllene"on UTI was evaluated in monosodium glutamate and chicken extract.We found that spices significantly decreased UTI and umami taste components in CB.Interestingly,the perceptually similar odorants and tastants exhibited the potential to enhance UTI in food matrices.Methional was able to increase the UTI,whereas spicy and green-note components could reduce the UTI significantly.This information would be valuable to food engineers and formulators in aroma selection to control the UTI perceived by consumers,thus,improving the quality and acceptability of the chicken products.展开更多
Inspired by the skin structure,an asymmetric wettability tri-layer nanofiber membrane(TNM)consisting of hydrophilic inner layer loaded with lidocaine hydrochloride(LID),hydrophobic middle layer with ciprofloxacin(CIP)...Inspired by the skin structure,an asymmetric wettability tri-layer nanofiber membrane(TNM)consisting of hydrophilic inner layer loaded with lidocaine hydrochloride(LID),hydrophobic middle layer with ciprofloxacin(CIP)and hydrophobic outer layer has been created.The hydrophobic outer layer endows the TNM with waterproof function and anti-adhesion from contaminants.The hydrophobic middle layer with CIP preserves long-term inhibition of bacteria growth and the hydrophilic inner layer with LID possesses optimal waterabsorbing capacity and air permeability.The TNM dramatically elevates the water contact angles from 10°(inner layer)to 120(outer layer),indicating an asymmetric wettability,which could directionally transport wound exudate within the materials and meanwhile maintain a comfortable and moist environment to promote wound healing.Furthermore,the sequential release of LID and CIP could relieve pain rapidly and achieve antibacterial effect in the long run,respectively.In addition,the TNM shows superior biocompatibility towards L929 cells.The in vivo results show the TNM could prevent infection,accelerate epithelial regeneration and significantly accelerate wound healing.This study indicates the developed TNM with asymmetrical wettability and synergetic drug release shows great potential as a wound dressing in clinical application.展开更多
Liver transplantation(LT)has become the most efficient treatment for pediatric and adult end-stage liver disease and the survival time after transplantation is becoming longer due to the development of surgical techni...Liver transplantation(LT)has become the most efficient treatment for pediatric and adult end-stage liver disease and the survival time after transplantation is becoming longer due to the development of surgical techniques and perioperative management.However,long-term side-effects of immunosuppressants,like infection,metabolic disorders and malignant tumor are gaining more attention.Immune tolerance is the status in which LT recipients no longer need to take any immunosuppressants,but the liver function and intrahepatic histology maintain normal.The approaches to achieve immune tolerance after transplantation include spontaneous,operational and induced tolerance.The first two means require no specific intervention but withdrawing immunosuppressant gradually during follow-up.No clinical factors or biomarkers so far could accurately predict who are suitable for immunosuppressant withdraw after transplantation.With the understanding to the underlying mechanisms of immune tolerance,many strategies have been developed to induce tolerance in LT recipients.Cellular strategy is one of the most promising methods for immune tolerance induction,including chimerism induced by hematopoietic stem cells and adoptive transfer of regulatory immune cells.The safety and efficacy of various cell products have been evaluated by prospective preclinical and clinical trials,while obstacles still exist before translating into clinical practice.Here,we will summarize the latest perspectives and concerns on the clinical application of cellular strategies in LT recipients.展开更多
Diamond/aluminium composites have attracted attention in the field of thermal management of electronic packaging for their excellent properties.In order to solve the interfacial problem between diamond and aluminium,a...Diamond/aluminium composites have attracted attention in the field of thermal management of electronic packaging for their excellent properties.In order to solve the interfacial problem between diamond and aluminium,a novel process combining pressure infiltration with vacuum-assisted technology was proposed to prepare diamond/aluminum composites.The effect of diamond particle size on the microstructure and properties of the diamond/Al-12Si composites was investigated.The results show that the diamond/Al-12Si composites exhibit high relative density and a uniform microstructure.Both thermal conductivity and coefficient of thermal expansion increase with increasing particle size,while the bending strength exhibits the opposite trend.When the average diamond particle size increases from 45μm to 425μm,the thermal conductivity of the composites increases from 455 W·m^(-1)·K^(-1)to 713 W·m^(-1)·K^(-1)and the coefficient of thermal expansion increases from 4.97×10^(-6)K^(-1)to 6.72×10^(-6)K^(-1),while the bending strength decreases from 353 MPa to 246 MPa.This research demonstrates that high-quality composites can be prepared by the vacuum-assisted pressure infiltration process and the thermal conductivity of the composites can be effectively improved by increasing the diamond particle size.展开更多
短波红外光探测技术在军事国防、工业制造、医疗诊断等领域得到了重要应用,然而昂贵的价格限制了该技术的普及和应用场景的拓展。发展基于新型光敏材料的短波红外光探测被认为是该技术实现大规模应用的关键。有机光探测器在低成本和柔...短波红外光探测技术在军事国防、工业制造、医疗诊断等领域得到了重要应用,然而昂贵的价格限制了该技术的普及和应用场景的拓展。发展基于新型光敏材料的短波红外光探测被认为是该技术实现大规模应用的关键。有机光探测器在低成本和柔性化两方面具有显著的优势,在短波红外光探测领域发展十分迅速,有望与In Ga As和量子点等技术实现互补,在物联网与人工智能经济领域的低成本需求端实现大规模应用。该文对有机光探测器的工作原理和性能参数做了基本介绍,系统总结评述了聚合物和小分子两类短波红外有机光探测材料的发展,以及短波红外有机光探测技术的应用。展开更多
Bitcoin is widely used as the most classic electronic currency for various electronic services such as exchanges,gambling,marketplaces,and also scams such as high-yield investment projects.Identifying the services ope...Bitcoin is widely used as the most classic electronic currency for various electronic services such as exchanges,gambling,marketplaces,and also scams such as high-yield investment projects.Identifying the services operated by a Bitcoin address can help determine the risk level of that address and build an alert model accordingly.Feature engineering can also be used to flesh out labeled addresses and to analyze the current state of Bitcoin in a small way.In this paper,we address the problem of identifying multiple classes of Bitcoin services,and for the poor classification of individual addresses that do not have significant features,we propose a Bitcoin address identification scheme based on joint multi-model prediction using the mapping relationship between addresses and entities.The innovation of the method is to(1)Extract as many valuable features as possible when an address is given to facilitate the multi-class service identification task.(2)Unlike the general supervised model approach,this paper proposes a joint prediction scheme for multiple learners based on address-entity mapping relationships.Specifically,after obtaining the overall features,the address classification and entity clustering tasks are performed separately,and the results are subjected to graph-basedmaximization consensus.The final result ismade to baseline the individual address classification results while satisfying the constraint of having similarly behaving entities as far as possible.By testing and evaluating over 26,000 Bitcoin addresses,our feature extraction method captures more useful features.In addition,the combined multi-learner model obtained results that exceeded the baseline classifier reaching an accuracy of 77.4%.展开更多
Skyrmions, with their vortex-like structures and inherent topological protection, play a pivotal role in developing innovative low-power memory and logic devices. The efficient generation and control of skyrmions in g...Skyrmions, with their vortex-like structures and inherent topological protection, play a pivotal role in developing innovative low-power memory and logic devices. The efficient generation and control of skyrmions in geometrically confined systems are crucial for the development of skyrmion-based spintronic devices. In this study, we focus on investigating the non-reciprocal transport behavior of skyrmions and their interactions with boundaries of various shapes. The shape of the notch structure in the nanotrack significantly affects the dynamic behavior of magnetic skyrmions. Through micromagnetic simulation, the non-reciprocal transport properties of skyrmions in nanowires with different notch structures are investigated in this work.展开更多
Gastroduodenal tuberculosis(GD-TB)is exceptionally rare.The clinical manifestations of gastrointestinal TB are diverse and non-specific,which makes diagnosis difficult,leading to delayed diagnosis and high mortality.A...Gastroduodenal tuberculosis(GD-TB)is exceptionally rare.The clinical manifestations of gastrointestinal TB are diverse and non-specific,which makes diagnosis difficult,leading to delayed diagnosis and high mortality.As a peer-reviewer of World Journal of Clinical Cases,I would like to share my opinion on the article published by this journal.The patient had no family history of TB or contact with people with TB.Primary GD-TB presenting as gastric outlet obstruction and normal findings of thoracic computed tomography increased the difficulty of diagnosis and treatment in this patient.The diagnosis and treatment scheme of this typical case have reference value for the clinical treatment of GD-TB.展开更多
基金Supported by National Natural Science Foundation of China,No.82000276the Science and Technology Project of Jiangxi Provincial Health Commission,No.202310005.
文摘BACKGROUND Diabetic cardiomyopathy(DCM),which is a complication of diabetes,poses a great threat to public health.Recent studies have confirmed the role of NLRP3(NOD-like receptor protein 3)activation in DCM development through the inflammatory response.Teneligliptin is an oral hypoglycemic dipeptidyl peptidase-IV inhibitor used to treat diabetes.Teneligliptin has recently been reported to have anti-inflammatory and protective effects on myocardial cells.AIM To examine the therapeutic effects of teneligliptin on DCM in diabetic mice.METHODS Streptozotocin was administered to induce diabetes in mice,followed by treatment with 30 mg/kg teneligliptin.RESULTS Marked increases in cardiomyocyte area and cardiac hypertrophy indicator heart weight/tibia length reductions in fractional shortening,ejection fraction,and heart rate;increases in creatine kinase-MB(CK-MB),aspartate transaminase(AST),and lactate dehydrogenase(LDH)levels;and upregulated NADPH oxidase 4 were observed in diabetic mice,all of which were significantly reversed by teneligliptin.Moreover,NLRP3 inflammasome activation and increased release of interleukin-1βin diabetic mice were inhibited by teneligliptin.Primary mouse cardiomyocytes were treated with high glucose(30 mmol/L)with or without teneligliptin(2.5 or 5μM)for 24 h.NLRP3 inflammasome activation.Increases in CKMB,AST,and LDH levels in glucose-stimulated cardiomyocytes were markedly inhibited by teneligliptin,and AMP(p-adenosine 5‘-monophosphate)-p-AMPK(activated protein kinase)levels were increased.Furthermore,the beneficial effects of teneligliptin on hyperglycaemia-induced cardiomyocytes were abolished by the AMPK signaling inhibitor compound C.CONCLUSION Overall,teneligliptin mitigated DCM by mitigating activation of the NLRP3 inflammasome.
基金financial support from Singapore Ministry of Education under its AcRF Tier 2 Grant No MOE-T2EP10123-0001Singapore National Research Foundation Investigatorship under Grant No NRF-NRFI08-2022-0009Academic Excellence Foundation of BUAA for PhD Students(applicant:Hongfei Xu).
文摘An anion-rich electric double layer(EDL)region is favorable for fabricating an inorganic-rich solid-electrolyte interphase(SEI)towards stable lithium metal anode in ester electrolyte.Herein,cetyltrimethylammonium bromide(CTAB),a cationic surfactant,is adopted to draw more anions into EDL by ionic interactions that shield the repelling force on anions during lithium plating.In situ electrochemical surface-enhanced Raman spectroscopy results combined with molecular dynamics simulations validate the enrichment of NO_(3)^(−)/FSI−anions in the EDL region due to the positively charged CTA^(+).In-depth analysis of SEI structure by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry results confirmed the formation of the inorganic-rich SEI,which helps improve the kinetics of Li^(+)transfer,lower the charge transfer activation energy,and homogenize Li deposition.As a result,the Li||Li symmetric cell in the designed electrolyte displays a prolongated cycling time from 500 to 1300 h compared to that in the blank electrolyte at 0.5 mA cm^(-2) with a capacity of 1 mAh cm^(-2).Moreover,Li||LiFePO_(4) and Li||LiCoO_(2) with a high cathode mass loading of>10 mg cm^(-2) can be stably cycled over 180 cycles.
基金the support from the National Natural Science Foundation of China under grant Nos.12333007,U1838202,U1838201,U1838107,U1838113,U1838113 and U2038102the Youth Innovation Promotion Association of the CAS(grant id 2018014)+1 种基金the National Key R&D Program of China(grant No.2021YFA0718500)partially supported by the International Partnership Program of the Chinese Academy of Sciences(grant No.113111KYSB20190020)。
文摘We conduct a statistical analysis of the hardness ratio(HR)for bright sources in the 4 yr Galactic Plane Scanning Survey catalog of Insight-HXMT.Depending on the stable(variable)flux F_(s)(F_(v))or spectrum S_(s)(S_(v))of each source,the bright sources are classified into three groups:F_(v)&S_(v),F_(v)&S_(s),and F_(s)&_(s).Our study of the HR characteristics in different types of sources reveals that accretion-powered neutron star(NS)low-mass X-ray binaries(LMXBs)exhibit softer energy spectra than NS high-mass X-ray binaries(HMXBs),but harder energy spectra than black hole binaries in most cases.This difference is probably due to their different magnetic field strengths.Additionally,Fv&Sv LMXBs tend to be harder than Fv&Ss LMXBs below 7 keV,while the opposite is true for HMXBs.Our results suggest that LMXBs may dominate unclassified sources,and NS binaries are likely to be the primary type of X-ray binaries with ambiguous compact stars.By comparing the HR of transient sources in their outburst and low-flux states,it is found that the averaged HR of four sources in the two states are roughly comparable within uncertainties.We also investigate the spatial properties of the three groups and find that Fv&Sv sources are mainly located in the longitude of-20°<l<9°,Fv&Ss sources cross the Galactic Plane,and Fs&Ss sources are predominantly concentrated in 19°<l<42°.In addition,analyzing the HR spatial distributions shows the absorption of soft X-rays(primarily below 2 keV)in the Galactic Plane.
基金supported by the National Key Research and Development Program of China(2021YFD1801000)the Natural Science Foundation of China(32373066)+1 种基金the Natural Science Foundation of Jilin Province(20230101142JC)the Fundamental Research Funds for the Central Universities.
文摘Infections caused by intracellular bacterial pathogens are difficult to treat since most antibiotics have low cell permeability and undergo rapid degradation within cells.The rapid development and dissemination of antimicrobial–resistant strains have exacerbated this dilemma.With the increasing knowledge of host–pathogen interactions,especially bacterial strategies for survival and proliferation within host cells,host-directed therapy(HDT)has attracted increased interest and has emerged as a promising antiinfection method for treating intracellular infection.Herein,we applied a cell-based screening approach to a US Food and Drug Administration(FDA)-approved drug library to identify compounds that can inhibit the intracellular replication of Salmonella Typhimurium(S.Typhimurium).This screening allowed us to identify the antidiarrheal agent loperamide(LPD)as a potent inhibitor of S.Typhimurium intracellular proliferation.LPD treatment of infected cells markedly promoted the host autophagic response and lysosomal activity.A mechanistic study revealed that the increase in host autophagy and elimination of intracellular bacteria were dependent on the high expression of glycoprotein nonmetastatic melanoma protein B(GPNMB)induced by LPD.In addition,LPD treatment effectively protected against S.Typhimurium infection in Galleria mellonella and mouse models.Thus,our study suggested that LPD may be useful for the treatment of diseases caused by intracellular bacterial pathogens.Moreover,LPD may serve as a promising lead compound for the development of anti-infection drugs based on the HDT strategy.
基金supported by the National Key Research and Development Program of China(2022YFF0711500)National Natural Science Foundation of China(NSFC,grant Nos.12373110,12273077,12103070,and 12333004)+3 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(grant Nos.XDA15310300,XDB0550200,XDB0550100,and XDB0550000)supported by China National Astronomical Data Center(NADC)Chinese Virtual Observatory(China-VO)supported by Astronomical Big Data Joint Research Center,cofounded by National Astronomical Observatories,Chinese Academy of Sciences and Alibaba Cloud。
文摘X-ray observations play a crucial role in time-domain astronomy.The Einstein Probe(EP),a recently launched X-ray astronomical satellite,emerges as a forefront player in the field of time-domain astronomy and high-energy astrophysics.With a focus on systematic surveys in the soft X-ray band,EP aims to discover high-energy transients and monitor variable sources in the universe.To achieve these objectives,a quick and reliable classification of observed sources is essential.In this study,we developed a machine learning classifier for autonomous source classification using data from the EP-WXT Pathfinder—Lobster Eye Imager for Astronomy(LEIA)and EP-WXT simulations.The proposed Random Forest classifier,built on selected features derived from light curves,energy spectra,and location information,achieves an accuracy of approximately 95%on EP simulation data and 98%on LEIA observational data.The classifier is integrated into the LEIA data processing pipeline,serving as a tool for manual validation and rapid classification during observations.This paper presents an efficient method for the classification of X-ray sources based on single observations,along with implications of most effective features for the task.This work facilitates rapid source classification for the EP mission and also provides valuable insights into feature selection and classification techniques for enhancing the efficiency and accuracy of X-ray source classification that can be adapted to other X-ray telescope data.
基金supported by the National Key Research and Development Programs(2021YFB2400400)Major Science and Technology Innovation Project of Hunan Province(2020GK10102020GK1014-4)+7 种基金National Natural Science Foundation of China(32201162)the 70th general grant of China Postdoctoral Science Foundation(2021M702947)Natural Science Foundation of Henan(232300420404)Key Scientific and Technological Project of Henan Province(232102320290,232102311156)Key Research Project Plan for Higher Education Institutions in Henan Province(24A150009,23B430011)Doctor Foundation of Henan University of Engineering(D2022002)the Science and Technology Innovation Program of Hunan Province(2023RC3154)the scientific research projects of Education Department of Hunan Province(23A0188)。
文摘Aqueous Zn metal batteries(AZMBs)with intrinsic safety,high energy density and low cost have been regarded as promising electrochemical energy storage devices.However,the parasitic reaction on metallic Zn anode and the incompatibility between electrode and electrolytes lead to the deterioration of electrochemical performance of AZMBs during the cycling.The critical point to achieve the stable cycling of AZMBs is to properly regulate the zinc ion solvated structure and transfer behavior between metallic Zn anode and electrolyte.In recent years,numerous achievements have been made to resolve the formation of Zn dendrite and interface incompatible issues faced by AZMBs via optimizing the sheath structure and transport capability of zinc ions at electrode-electrolyte interface.In this review,the challenges for metallic Zn anode and electrode-electrolyte interface in AZMBs including dendrite formation and interface characteristics are presented.Following the influences of different strategies involving designing advanced electrode structu re,artificial solid electrolyte interphase(SEI)on Zn anode and electrolyte engineering to regulate zinc ion solvated sheath structure and transport behavior are summarized and discussed.Finally,the perspectives for the future development of design strategies for dendrite-free Zn metal anode and long lifespan AZMBs are also given.
文摘In this paper, the problem of abnormal spectrum usage between satellite spectrum sharing systems is investigated to support multi-satellite spectrum coexistence. Given the cost of monitoring, the mobility of low-orbit satellites, and the directional nature of their signals, traditional monitoring methods are no longer suitable, especially in the case of multiple power level. Mobile crowdsensing(MCS), as a new technology, can make full use of idle resources to complete a variety of perceptual tasks. However, traditional MCS heavily relies on a centralized server and is vulnerable to single point of failure attacks. Therefore, we replace the original centralized server with a blockchain-based distributed service provider to enable its security. Therefore, in this work, we propose a blockchain-based MCS framework, in which we explain in detail how this framework can achieve abnormal frequency behavior monitoring in an inter-satellite spectrum sharing system. Then, under certain false alarm probability, we propose an abnormal spectrum detection algorithm based on mixed hypothesis test to maximize detection probability in single power level and multiple power level scenarios, respectively. Finally, a Bad out of Good(BooG) detector is proposed to ease the computational pressure on the blockchain nodes. Simulation results show the effectiveness of the proposed framework.
文摘β-gallium oxide(β-Ga2O3),as the typical representative of the fourth generation of semiconductors,has attracted increasing attention owing to its ultra-wide bandgap,superior optical properties,and excellent tolerance to high temperature and radiation.Compared to the single crystals of other semiconductors,high-quality and large-size β-Ga_(2)O_(3) single crystals can be grown with low-cost melting methods,making them highly competitive.In this review,the growth process,defects,and dopants ofβ-Ga_(2)O_(3) are primarily discussed.Firstly,the growth process(e.g.,decomposition,crucible corrosion,spiral growth,and development)ofβ-Ga_(2)O_(3) single crystals are summarized and compared in detail.Then,the defects of β-Ga_(2)O_(3) single crystals and the influence of defects on Schottky barrier diode(SBD)devices are emphatically discussed.Besides,the influences of impurities and intrinsic defects on the electronic and optical properties ofβ-Ga_(2)O_(3) are also briefly discussed.Concluding this comprehensive analysis,the article offers a concise summary of the current state,challenges and prospects ofβ-Ga_(2)O_(3) single crystals.
基金supported by the Key R&D Program of Anhui Province in 2020 under Grant No.202004a05020078China Environment for Network Innovations(CENI)under Grant No.2016-000052-73-01-000515.
文摘As users’access to the network has evolved into the acquisition of mass contents instead of IP addresses,the IP network architecture based on end-to-end communication cannot meet users’needs.Therefore,the Information-Centric Networking(ICN)came into being.From a technical point of view,ICN is a promising future network architecture.Researching and customizing a reasonable pricing mechanism plays a positive role in promoting the deployment of ICN.The current research on ICN pricing mechanism is focused on paid content.Therefore,we study an ICN pricing model for free content,which uses game theory based on Nash equilibrium to analysis.In this work,advertisers are considered,and an advertiser model is established to describe the economic interaction between advertisers and ICN entities.This solution can formulate the best pricing strategy for all ICN entities and maximize the benefits of each entity.Our extensive analysis and numerical results show that the proposed pricing framework is significantly better than existing solutions when it comes to free content.
基金Project supported by the National Key R&D Program of China (Grant No.2022YFB2402500)the National Natural Science Foundation of China (Grant Nos.52122214,92372116,and 52394174)+2 种基金Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No.2020006)Jiangsu Province Carbon Peak and Neutrality Innovation Program (Industry tackling on prospect and key technology BE2022002-5)Guangxi Power Grid Project (Grant No.GXKJXM20210260)。
文摘In Na-ion batteries,O3-type layered oxide cathode materials encounter challenges such as particle cracking,oxygen loss,electrolyte side reactions,and multi-phase transitions during the charge/discharge process.This study focuses on surface coating with NiTiO_(3) achieved via secondary heat treatment using a coating precursor and the surface material.Through in-situ x-ray diffraction(XRD)and differential electrochemical mass spectrometry(DEMS),along with crystal structure characterizations of post-cycling materials,it was determined that the NiTiO_(3) coating layer facilitates the formation of a stable lattice structure,effectively inhibiting lattice oxygen loss and reducing side reaction with the electrolyte.This enhancement in cycling stability was evidenced by a capacity retention of approximately 74%over 300 cycles at 1 C,marking a significant 30%improvement over the initial sample.Furthermore,notable advancements in rate performance were observed.Experimental results indicate that a stable and robust surface structure substantially enhances the overall stability of the bulk phase,presenting a novel approach for designing layered oxide cathodes with higher energy density.
基金the funding of National Key R&D Program of China(No.2020YFA0711700)Hunan National Natural Science Foundation(2021JJ30652)+3 种基金National Natural Science Foundation of China(52002404)Natural Science Foundation of Guangdong Province(2020A1515011198)Characteristic Innovation Projects of Colleges and Universities in Guangdong Province(2020KT SCX081)State Key Laboratory of Powder Metallurgy,Central South University,Changsha,China
文摘How to achieve synergistic improvement of permittivity(ε_(r))and breakdown strength(E_(b))is a huge challenge for polymer dielectrics.Here,for the first time,theπ-conjugated comonomer(MHT)can simultaneously promote theε_(r)and E_(b)of linear poly(methyl methacrylate)(PMMA)copolymers.The PMMA-based random copolymer films(P(MMA-co-MHT)),block copolymer films(PMMA-b-PMHT),and PMMA-based blend films were prepared to investigate the effects of sequential structure,phase separation structure,and modification method on dielectric and energy storage properties of PMMA-based dielectric films.As a result,the random copolymer P(MMA-coMHT)can achieve a maximumε_(r)of 5.8 at 1 kHz owing to the enhanced orientation polarization and electron polarization.Because electron injection and charge transfer are limited by the strong electrostatic attraction ofπ-conjugated benzophenanthrene group analyzed by the density functional theory(DFT),the discharge energy density value of P(MMA-co-PMHT)containing 1 mol%MHT units with the efficiency of 80%reaches15.00 J cm^(-3)at 872 MV m^(-1),which is 165%higher than that of pure PMMA.This study provides a simple and effective way to fabricate the high performance of polymer dielectrics via copolymerization with the monomer of P-type semi-conductive polymer.
基金supported by the National Natural Science Foundation of China (31622042)。
文摘In this study,umami taste intensity(UTI)and umami taste components in chicken breast(CB)and chickenspices blends were characterized using sensory and instrumental analysis.Our main objective was to assess the aroma-umami taste interactions in different food matrices and reconcile the aroma-taste perception to assist future product development.The impact of key aroma,including vegetable-note"2-pentylfuran",meaty"methional",green"hexanal",and spicy-note-estragole and caryophyllene"on UTI was evaluated in monosodium glutamate and chicken extract.We found that spices significantly decreased UTI and umami taste components in CB.Interestingly,the perceptually similar odorants and tastants exhibited the potential to enhance UTI in food matrices.Methional was able to increase the UTI,whereas spicy and green-note components could reduce the UTI significantly.This information would be valuable to food engineers and formulators in aroma selection to control the UTI perceived by consumers,thus,improving the quality and acceptability of the chicken products.
文摘Inspired by the skin structure,an asymmetric wettability tri-layer nanofiber membrane(TNM)consisting of hydrophilic inner layer loaded with lidocaine hydrochloride(LID),hydrophobic middle layer with ciprofloxacin(CIP)and hydrophobic outer layer has been created.The hydrophobic outer layer endows the TNM with waterproof function and anti-adhesion from contaminants.The hydrophobic middle layer with CIP preserves long-term inhibition of bacteria growth and the hydrophilic inner layer with LID possesses optimal waterabsorbing capacity and air permeability.The TNM dramatically elevates the water contact angles from 10°(inner layer)to 120(outer layer),indicating an asymmetric wettability,which could directionally transport wound exudate within the materials and meanwhile maintain a comfortable and moist environment to promote wound healing.Furthermore,the sequential release of LID and CIP could relieve pain rapidly and achieve antibacterial effect in the long run,respectively.In addition,the TNM shows superior biocompatibility towards L929 cells.The in vivo results show the TNM could prevent infection,accelerate epithelial regeneration and significantly accelerate wound healing.This study indicates the developed TNM with asymmetrical wettability and synergetic drug release shows great potential as a wound dressing in clinical application.
基金Supported by the National Natural Science Foundation of China,No.82000586 and No.82241221and Shanghai Immune Therapy Institute.
文摘Liver transplantation(LT)has become the most efficient treatment for pediatric and adult end-stage liver disease and the survival time after transplantation is becoming longer due to the development of surgical techniques and perioperative management.However,long-term side-effects of immunosuppressants,like infection,metabolic disorders and malignant tumor are gaining more attention.Immune tolerance is the status in which LT recipients no longer need to take any immunosuppressants,but the liver function and intrahepatic histology maintain normal.The approaches to achieve immune tolerance after transplantation include spontaneous,operational and induced tolerance.The first two means require no specific intervention but withdrawing immunosuppressant gradually during follow-up.No clinical factors or biomarkers so far could accurately predict who are suitable for immunosuppressant withdraw after transplantation.With the understanding to the underlying mechanisms of immune tolerance,many strategies have been developed to induce tolerance in LT recipients.Cellular strategy is one of the most promising methods for immune tolerance induction,including chimerism induced by hematopoietic stem cells and adoptive transfer of regulatory immune cells.The safety and efficacy of various cell products have been evaluated by prospective preclinical and clinical trials,while obstacles still exist before translating into clinical practice.Here,we will summarize the latest perspectives and concerns on the clinical application of cellular strategies in LT recipients.
文摘Diamond/aluminium composites have attracted attention in the field of thermal management of electronic packaging for their excellent properties.In order to solve the interfacial problem between diamond and aluminium,a novel process combining pressure infiltration with vacuum-assisted technology was proposed to prepare diamond/aluminum composites.The effect of diamond particle size on the microstructure and properties of the diamond/Al-12Si composites was investigated.The results show that the diamond/Al-12Si composites exhibit high relative density and a uniform microstructure.Both thermal conductivity and coefficient of thermal expansion increase with increasing particle size,while the bending strength exhibits the opposite trend.When the average diamond particle size increases from 45μm to 425μm,the thermal conductivity of the composites increases from 455 W·m^(-1)·K^(-1)to 713 W·m^(-1)·K^(-1)and the coefficient of thermal expansion increases from 4.97×10^(-6)K^(-1)to 6.72×10^(-6)K^(-1),while the bending strength decreases from 353 MPa to 246 MPa.This research demonstrates that high-quality composites can be prepared by the vacuum-assisted pressure infiltration process and the thermal conductivity of the composites can be effectively improved by increasing the diamond particle size.
文摘短波红外光探测技术在军事国防、工业制造、医疗诊断等领域得到了重要应用,然而昂贵的价格限制了该技术的普及和应用场景的拓展。发展基于新型光敏材料的短波红外光探测被认为是该技术实现大规模应用的关键。有机光探测器在低成本和柔性化两方面具有显著的优势,在短波红外光探测领域发展十分迅速,有望与In Ga As和量子点等技术实现互补,在物联网与人工智能经济领域的低成本需求端实现大规模应用。该文对有机光探测器的工作原理和性能参数做了基本介绍,系统总结评述了聚合物和小分子两类短波红外有机光探测材料的发展,以及短波红外有机光探测技术的应用。
基金sponsored by the National Natural Science Foundation of China Nos.62172353,62302114 and U20B2046Future Network Scientific Research Fund Project No.FNSRFP-2021-YB-48Innovation Fund Program of the Engineering Research Center for Integration and Application of Digital Learning Technology of Ministry of Education No.1221045。
文摘Bitcoin is widely used as the most classic electronic currency for various electronic services such as exchanges,gambling,marketplaces,and also scams such as high-yield investment projects.Identifying the services operated by a Bitcoin address can help determine the risk level of that address and build an alert model accordingly.Feature engineering can also be used to flesh out labeled addresses and to analyze the current state of Bitcoin in a small way.In this paper,we address the problem of identifying multiple classes of Bitcoin services,and for the poor classification of individual addresses that do not have significant features,we propose a Bitcoin address identification scheme based on joint multi-model prediction using the mapping relationship between addresses and entities.The innovation of the method is to(1)Extract as many valuable features as possible when an address is given to facilitate the multi-class service identification task.(2)Unlike the general supervised model approach,this paper proposes a joint prediction scheme for multiple learners based on address-entity mapping relationships.Specifically,after obtaining the overall features,the address classification and entity clustering tasks are performed separately,and the results are subjected to graph-basedmaximization consensus.The final result ismade to baseline the individual address classification results while satisfying the constraint of having similarly behaving entities as far as possible.By testing and evaluating over 26,000 Bitcoin addresses,our feature extraction method captures more useful features.In addition,the combined multi-learner model obtained results that exceeded the baseline classifier reaching an accuracy of 77.4%.
基金Project supported by the Key-Area Research and Development Program of Guangdong Province,China(Grant No.2021B0101300003)the Guangdong Basic and Applied Basic Research Foundation,China(Grant Nos.2022A1515110863 and 2023A1515010837)+5 种基金the National Key Research and Development Program of China(Grant No.2016YFA0300803)the National Natural Science Foundation of China(Grant Nos.12304136,61427812,11774160,12241403,51771127,52171188,and 52111530143)the Natural Science Foundation of Jiangsu Province,China(Grant Nos.BK20192006 and BK20200307)the Fundamental Research Funds for the Central Universities,China(Grant No.021014380113)International Exchanges 2020 Cost Share(NSFC),China(Grant No.IECNSFC201296)the Project for Maiden Voyage of Guangzhou Basic and Applied Basic Research Scheme,China(Grant No.2024A04J4186)。
文摘Skyrmions, with their vortex-like structures and inherent topological protection, play a pivotal role in developing innovative low-power memory and logic devices. The efficient generation and control of skyrmions in geometrically confined systems are crucial for the development of skyrmion-based spintronic devices. In this study, we focus on investigating the non-reciprocal transport behavior of skyrmions and their interactions with boundaries of various shapes. The shape of the notch structure in the nanotrack significantly affects the dynamic behavior of magnetic skyrmions. Through micromagnetic simulation, the non-reciprocal transport properties of skyrmions in nanowires with different notch structures are investigated in this work.
基金Supported by Shenyang Science and Technology Plan Project,No.23-408-3-01The Natural Science Foundation of Liaoning Province,No.2022-MS-435.
文摘Gastroduodenal tuberculosis(GD-TB)is exceptionally rare.The clinical manifestations of gastrointestinal TB are diverse and non-specific,which makes diagnosis difficult,leading to delayed diagnosis and high mortality.As a peer-reviewer of World Journal of Clinical Cases,I would like to share my opinion on the article published by this journal.The patient had no family history of TB or contact with people with TB.Primary GD-TB presenting as gastric outlet obstruction and normal findings of thoracic computed tomography increased the difficulty of diagnosis and treatment in this patient.The diagnosis and treatment scheme of this typical case have reference value for the clinical treatment of GD-TB.