Plasmonic hot carrier engineering holds great promise for advanced infrared optoelectronic devices.The process of hot carrier transfer has the potential to surpass the spectral limitations of semiconductors,enabling d...Plasmonic hot carrier engineering holds great promise for advanced infrared optoelectronic devices.The process of hot carrier transfer has the potential to surpass the spectral limitations of semiconductors,enabling detection of subbandgap infrared photons.By harvesting hot carriers prior to thermalization,energy dissipation is minimized,leading to highly efficient photoelectric conversion.Distinguished from conventional band-edge carriers,the ultrafast interfacial transfer and ballistic transport of hot carriers present unprecedented opportunities for high-speed photoelectric conversion.However,a complete description on the underlying mechanism of hot-carrier infrared optoelectronic device is still lacking,and the utilization of this strategy for tailoring infrared response is in its early stages.This review aims to provide a comprehensive overview of the generation,transfer and transport dynamics of hot carriers.Basic principles of hot-carrier conversion in heterostructures are discussed in detail.In addition,progresses of two-dimensional(2D)infrared hot-carrier optoelectronic devices are summarized,with a specific emphasis on photodetectors,solar cells,light-emitting devices and novel functionalities through hot-carrier engineering.Furthermore,challenges and prospects of hot-carrier device towards infrared applications are highlighted.展开更多
CVD graphene is a promising candidate for optoelectronic applications due to its high quality and high yield.However,multi-layer domains could inevitably form at the nucleation centers during the growth.Here,we propos...CVD graphene is a promising candidate for optoelectronic applications due to its high quality and high yield.However,multi-layer domains could inevitably form at the nucleation centers during the growth.Here,we propose an optical imaging technique to precisely identify the multilayer domains and also the ratio of their coverage in large-scale CVD monolayer graphene.We have also shown that the stacking disorder in twisted bilayer graphene as well as the impurities on the graphene surface could be distinguished by optical imaging.Finally,we investigated the effects of bilayer domains on the optical and electrical properties of CVD graphene,and found that the carrier mobility of CVD graphene is seriously limited by scattering from bilayer domains.Our results could be useful for guiding future optoelectronic applications of large-scale CVD graphene.展开更多
基金National Key Research and Development Program of China,Grant/Award Numbers:2021YFA1202904,2023YFB3611400Project of State Key Laboratory of Organic Electronics and Information Displays,Nanjing University of Posts and Telecommunications,Grant/Award Number:GZR2024010024+3 种基金Natural Science Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications,Grant/Award Number:NY223181National Natural Science Foundation of China,Grant/Award Numbers:62375139,62288102,62235008,62174026,62225404Natural Science Foundation of Jiangsu Province Major Project,Grant/Award Number:BK20212012Project of State Key Laboratory of Organic Electronics and Information Displays,Grant/Award Number:GDX2022010007。
文摘Plasmonic hot carrier engineering holds great promise for advanced infrared optoelectronic devices.The process of hot carrier transfer has the potential to surpass the spectral limitations of semiconductors,enabling detection of subbandgap infrared photons.By harvesting hot carriers prior to thermalization,energy dissipation is minimized,leading to highly efficient photoelectric conversion.Distinguished from conventional band-edge carriers,the ultrafast interfacial transfer and ballistic transport of hot carriers present unprecedented opportunities for high-speed photoelectric conversion.However,a complete description on the underlying mechanism of hot-carrier infrared optoelectronic device is still lacking,and the utilization of this strategy for tailoring infrared response is in its early stages.This review aims to provide a comprehensive overview of the generation,transfer and transport dynamics of hot carriers.Basic principles of hot-carrier conversion in heterostructures are discussed in detail.In addition,progresses of two-dimensional(2D)infrared hot-carrier optoelectronic devices are summarized,with a specific emphasis on photodetectors,solar cells,light-emitting devices and novel functionalities through hot-carrier engineering.Furthermore,challenges and prospects of hot-carrier device towards infrared applications are highlighted.
基金Project supported by the National Natural Science Foundation of China(Nos.61422503,61376104)the Open Research Funds of Key Laboratory of MEMS of Ministry of Education(SEU,China)the Fundamental Research Funds for the Central Universities
文摘CVD graphene is a promising candidate for optoelectronic applications due to its high quality and high yield.However,multi-layer domains could inevitably form at the nucleation centers during the growth.Here,we propose an optical imaging technique to precisely identify the multilayer domains and also the ratio of their coverage in large-scale CVD monolayer graphene.We have also shown that the stacking disorder in twisted bilayer graphene as well as the impurities on the graphene surface could be distinguished by optical imaging.Finally,we investigated the effects of bilayer domains on the optical and electrical properties of CVD graphene,and found that the carrier mobility of CVD graphene is seriously limited by scattering from bilayer domains.Our results could be useful for guiding future optoelectronic applications of large-scale CVD graphene.