期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Activation of endogenous neurogenesis and angiogenesis by basic fibroblast growth factor-chitosan gel in an adult rat model of ischemic stroke 被引量:1
1
作者 Hongmei Duan Shulun Li +11 位作者 Peng Hao Fei Hao Wen Zhao yudan gao Hui Qiao Yiming Gu Yang Lv Xinjie Bao Kin Chiu Kwok-Fai So Zhaoyang Yang Xiaoguang Li 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期409-415,共7页
Attempts have been made to use cell transplantation and biomaterials to promote cell proliferation,differentiation,migration,and survival,as well as angiogenesis,in the context of brain injury.However,whether bioactiv... Attempts have been made to use cell transplantation and biomaterials to promote cell proliferation,differentiation,migration,and survival,as well as angiogenesis,in the context of brain injury.However,whether bioactive materials can repair the damage caused by ischemic stroke by activating endogenous neurogenesis and angiogenesis is still unknown.In this study,we applied chitosan gel loaded with basic fibroblast growth factor to the stroke cavity 7 days after ischemic stroke in rats.The gel slowly released basic fibroblast growth factor,which improved the local microenvironment,activated endogenous neural stem/progenitor cells,and recruited these cells to migrate toward the penumbra and stroke cavity and subsequently differentiate into neurons,while enhancing angiogenesis in the penumbra and stroke cavity and ultimately leading to partial functional recovery.This study revealed the mechanism by which bioactive materials repair ischemic strokes,thus providing a new strategy for the clinical application of bioactive materials in the treatment of ischemic stroke. 展开更多
关键词 adult endogenous neurogenesis ANGIOGENESIS basic fibroblast growth factor-chitosan gel CHITOSAN functional recovery ischemic stroke neural stem cell newborn neuron
下载PDF
Adult Mammalian Neurogenesis:Hopes and Challenges in the Repair of Spinal Cord Injury
2
作者 Zhaoyang Yang Wen Zhao +4 位作者 yudan gao Hongmei Duan Peng Hao Fei Hao Xiaoguang Li 《Engineering》 SCIE EI 2021年第12期1713-1714,共2页
Adult endogenous neurogenesis was first defined as the generation of neurons and glia cells in the central nervous system(CNS);it was subsequently referred to as the activation of endogenous neural stem cells,and ulti... Adult endogenous neurogenesis was first defined as the generation of neurons and glia cells in the central nervous system(CNS);it was subsequently referred to as the activation of endogenous neural stem cells,and ultimately limited to the generation of new neurons[1].The research team led by Xiaoguang Li enriched this concept in 2015:Endogenous neural stem cells in the adult CNS can be activated,recruited,and migrated to the injured area,where these stem cells further differentiate into mature neurons. 展开更多
关键词 ENDOGENOUS SPINAL neural
下载PDF
Endogenous neurogenesis in adult mammals after spinal cord injury 被引量:11
3
作者 Hongmei Duan Wei Song +3 位作者 Wen Zhao yudan gao Zhaoyang Yang Xiaoguang Li 《Science China(Life Sciences)》 SCIE CAS CSCD 2016年第12期1313-1318,共6页
During the whole life cycle of mammals,new neurons are constantly regenerated in the subgranular zone of the dentate gyrus and in the subventricular zone of the lateral ventricles.Thanks to emerging methodologies,grea... During the whole life cycle of mammals,new neurons are constantly regenerated in the subgranular zone of the dentate gyrus and in the subventricular zone of the lateral ventricles.Thanks to emerging methodologies,great progress has been made in the characterization of spinal cord endogenous neural stem cells(ependymal cells) and identification of their role in adult spinal cord development.As recently evidenced,both the intrinsic and extrinsic molecular mechanisms of ependymal cells control the sequential steps of the adult spinal cord neurogenesis.This review introduces the concept of adult endogenous neurogenesis,the reaction of ependymal cells after adult spinal cord injury(SCI),the heterogeneity and markers of ependymal cells,the factors that regulate ependymal cells,and the niches that impact the activation or differentiation of ependymal cells. 展开更多
关键词 adult endogenous neurogenesis neural stem cells ependymal cells spinal cord injury adult mammals REGENERATION
原文传递
Application of the sodium hyaluronate-CNTF scaffolds in repairing adult rat spinal cord injury and facilitating neural network formation 被引量:6
4
作者 Yabin Xie Wei Song +6 位作者 Wen Zhao yudan gao Junkui Shang Peng Hao Zhaoyang Yang Hongmei Duan Xiaoguang Li 《Science China(Life Sciences)》 SCIE CAS CSCD 2018年第5期559-568,共10页
The present study aimed to explore the potential of the sodium hyaluronate-CNTF (ciliary neurotrophic factor) scaffold in activating endogenous neurogenesis and facilitating neural network re-formation after the adult... The present study aimed to explore the potential of the sodium hyaluronate-CNTF (ciliary neurotrophic factor) scaffold in activating endogenous neurogenesis and facilitating neural network re-formation after the adult rat spinal cord injury (SCI). After completely cutting and removing a 5-mm adult rat T8 segment, a sodium hyaluronate-CNTF scaffold was implanted into the lesion area. Dil tracing and immunofluorescence staining were used to observe the proliferation, differentiation and integration of neural stem cells (NSCs) after SCI. A planar multielectrode dish system (MED64) was used to test the electrophysiological characteristics of the regenerated neural network in the lesioned area. Electrophysiology and behavior evaluation were used to evaluate functional recovery of paraplegic rat hindlimbs. The Dil tracing and immunofluorescence results suggest that the sodium hyaluronate-CNTF scaffold could activate the NSCs originating from the spinal cord ependymal, and facilitate their migration to the lesion area and differentiation into mature neurons, which were capable of forming synaptic contact and receiving glutamatergic excitatory synaptic input. The MED64 results suggest that functional synapsis could be established among regenerated neurons as well as between regenerated neurons and the host tissue, which has been evidenced to be glutamatergic excitatory synapsis. The electrophysiology and behavior evaluation results indicate that the paraplegic rats’ sensory and motor functions were recovered in some degree. Collectively, this study may shed light on paraplegia treatment in clinics. 展开更多
关键词 神经网络 成年人 脚手架 老鼠 损害 绳索 修理
原文传递
Chronic spinal cord injury repair by NT3-chitosan only occurs after clearance of the lesion scar 被引量:2
5
作者 Can Zhao Jia-Sheng Rao +8 位作者 Hongmei Duan Peng Hao Junkui Shang Yubo Fan Wen Zhao yudan gao Zhaoyang Yang Yi Eve Sun Xiaoguang Li 《Signal Transduction and Targeted Therapy》 SCIE CSCD 2022年第7期2568-2580,共13页
Spinal cord injury(SCI)is a severe damage usually leading to limb dysesthesia,motor dysfunction,and other physiological disability.We have previously shown that NT3-chitosan could trigger an acute SCI repairment in ra... Spinal cord injury(SCI)is a severe damage usually leading to limb dysesthesia,motor dysfunction,and other physiological disability.We have previously shown that NT3-chitosan could trigger an acute SCI repairment in rats and non-human primates.Due to the negative effect of inhibitory molecules in glial scar on axonal regeneration,however,the role of NT3-chitosan in the treatment of chronic SCI remains unclear.Compared with the fresh wound of acute SCI,how to handle the lesion core and glial scars is a major issue related to chronic-SCI repair.Here we report,in a chronic complete SCI rat model,establishment of magnetic resonancediffusion tensor imaging(MR-DTI)methods to monitor spatial and temporal changes of the lesion area,which matched well with anatomical analyses.Clearance of the lesion core via suction of cystic tissues and trimming of solid scar tissues before introducing NT3-chitosan using either a rigid tubular scaffold or a soft gel form led to robust neural regeneration,which interconnected the severed ascending and descending axons and accompanied with electrophysiological and motor functional recovery.In contrast,cystic tissue extraction without scar trimming followed by NT3-chitosan injection,resulted in little,if any regeneration.Taken together,after lesion core clearance,NT3-chitosan can be used to enable chronic-SCI repair and MR-DTI-based mapping of lesion area and monitoring of ongoing regeneration can potentially be implemented in clinical studies for subacute/chronic-SCI repair. 展开更多
关键词 SCAR NT3 WOUND
原文传递
Regeneration strategies after the adult mammalian central nervous system injury—biomaterials 被引量:1
6
作者 yudan gao Zhaoyang Yang Xiaoguang Li 《Regenerative Biomaterials》 SCIE 2016年第2期115-122,共8页
The central nervous system(CNS)has very restricted intrinsic regeneration ability under the injury or disease condition.Innovative repair strategies,therefore,are urgently needed to facilitate tissue regeneration and ... The central nervous system(CNS)has very restricted intrinsic regeneration ability under the injury or disease condition.Innovative repair strategies,therefore,are urgently needed to facilitate tissue regeneration and functional recovery.The published tissue repair/regeneration strategies,such as cell and/or drug delivery,has been demonstrated to have some therapeutic effects on experimental animal models,but can hardly find clinical applications due to such methods as the extremely low survival rate of transplanted cells,difficulty in integrating with the host or restriction of blood-brain barriers to administration patterns.Using biomaterials can not only increase the survival rate of grafts and their integration with the host in the injured CNS area,but also sustainably deliver bioproducts to the local injured area,thus improving the microenvironment in that area.This review mainly introduces the advances of various strategies concerning facilitating CNS regeneration. 展开更多
关键词 central nervous system injury NEUROGENESIS BIOMATERIALS axonal regeneration neural stem/precursor cell
原文传递
Cellular regeneration treatments for traumatic brain injury
7
作者 Hao Fan Hongmei Duan +5 位作者 Peng Hao yudan gao Wen Zhao Fei Hao Xiaoguang Li Zhaoyang Yang 《Medicine in Novel Technology and Devices》 2022年第4期285-292,共8页
Different types of traumatic brain injury(TBI)have posed a hazard to human health for a while,and their aftereffects have a significant negative impact on patients'quality of life.Despite the increased attention t... Different types of traumatic brain injury(TBI)have posed a hazard to human health for a while,and their aftereffects have a significant negative impact on patients'quality of life.Despite the increased attention that TBI has received recently,the clinical treatment plan that is currently in place only consists of palliative therapy for neuroprotection or the mitigation of secondary injury,which has only a minimally positive impact on the prognosis and quality of life in TBI patients.After TBI,regenerative therapy seeks to improve the patient's function.Cell therapy,which has become one of the hottest research fields,is expected to improve the therapeutic effect of this disease.This article will briefly discuss recent developments in research of TBI and available treatments,and then give a general assessment of the outlook. 展开更多
关键词 Traumatic brain injury Nerve regeneration Endogenous neurogenesis Cell replacement therapy
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部