期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Hierarchical structure observation and nanoindentation size effect characterization for a limnetic shell 被引量:4
1
作者 Jingru Song Cuncai Fan +1 位作者 Hansong Ma yueguang wei 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2015年第3期364-372,共9页
In the present research, hierarchical structure observation and mechanical property characterization for a type of biomaterial are carried out. The investigated bioma- terial is Hyriopsis cumingii, a typical limnetic ... In the present research, hierarchical structure observation and mechanical property characterization for a type of biomaterial are carried out. The investigated bioma- terial is Hyriopsis cumingii, a typical limnetic shell, which consists of two different structural layers, a prismatic "pillar" structure and a nacreous "brick and mortar" structure. The prismatic layer looks like a "pillar forest" with variationsection pillars sized on the order of several tens of microns. The nacreous material looks like a "brick wall" with bricks sized on the order of several microns. Both pillars and bricks are composed of nanoparticles. The mechanical properties of the hierarchical biomaterial are measured by using the nanoindentation test. Hardness and modulus are measured for both the nacre layer and the prismatic layer, respectively. The nanoindentation size effects for the hierarchical structural materials are investigated experimentally. The results show that the prismatic nanostructured material has a higher stiffness and hardness than the nacre nanostructured material. In addition, the nanoindentation size effects for the hierarchical structural materials are described theoretically, by using the trans-scale mechanics theory considering both strain gradient effect and the surface/interface effect. The modeling results are consistent with experimental ones. 展开更多
关键词 Biomaterial Hierarchical structure - Mechan-ical property Nanoindentation size effect Trans-scalemechanics
下载PDF
Crack deflection occurs by constrained microcracking in nacre 被引量:2
2
作者 Jingru Song Cuncai Fan +2 位作者 Hansong Ma Lihong Liang yueguang wei 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2018年第1期143-150,共8页
For decades, nacre has inspired researchers because of its sophisticated hierarchical structure and remarkable mechanical properties, especially its extreme fracture toughness compared with that of its predominant con... For decades, nacre has inspired researchers because of its sophisticated hierarchical structure and remarkable mechanical properties, especially its extreme fracture toughness compared with that of its predominant constituent,CaCO3, in the form of aragonite. Crack deflection has been extensively reported and regarded as the principal toughening mechanism for nacre. In this paper, our attention is focused on crack evolution in nacre under a quasi-static state. We use the notched three-point bending test of dehydrated nacre in situ in a scanning electron microscope(SEM) to monitor the evolution of damage mechanisms ahead of the crack tip. The observations show that the crack deflection actually occurs by constrained microcracking. On the basis of our findings, a crack propagation model is proposed, which will contribute to uncovering the underlying mechanisms of nacre’s fracture toughness and its damage evolution. These investigations would be of great value to the design and synthesis of novel biomimetic materials. 展开更多
关键词 Biological mineralized material NACRE Toughening mechanism Three-point bending test Crack deflection Microcracking
下载PDF
Multiscale study of the dynamic friction coefficient due to asperity plowing 被引量:4
3
作者 Jianqiao HU Hengxu SONG +2 位作者 Stefan SANDFELD Xiaoming LIU yueguang wei 《Friction》 SCIE EI CAS CSCD 2021年第4期822-839,共18页
A macroscopically nominal flat surface is rough at the nanoscale level and consists of nanoasperities.Therefore,the frictional properties of the macroscale-level rough surface are determined by the mechanical behavior... A macroscopically nominal flat surface is rough at the nanoscale level and consists of nanoasperities.Therefore,the frictional properties of the macroscale-level rough surface are determined by the mechanical behaviors of nanoasperity contact pairs under shear.In this work,we first used molecular dynamics simulations to study the non-adhesive shear between single contact pairs.Subsequently,to estimate the friction coefficient of rough surfaces,we implemented the frictional behavior of a single contact pair into a Greenwood-Williamson-type statistical model.By employing the present multiscale approach,we used the size,rate,and orientation effects,which originated from nanoscale dislocation plasticity,to determine the dependence of the macroscale friction coefficient on system parameters,such as the surface roughness,separation,loading velocity,and direction.Our model predicts an unconventional dependence of the friction coefficient on the normal contact load,which has been observed in nanoscale frictional tests.Therefore,this model represents one step toward understanding some of the relevant macroscopic phenomena of surface friction at the nanoscale level. 展开更多
关键词 multiscale friction asperity plowing dislocation plasticity size/velocity effect crystal orientation statistical model
原文传递
Plastic accommodation during tensile deformation of gradient structure 被引量:3
4
作者 Xiaolei Wu Muxin Yang +5 位作者 Runguang Li Ping Jiang Fuping Yuan Yandong Wang Yuntian Zhu yueguang wei 《Science China Materials》 SCIE EI CAS CSCD 2021年第6期1534-1544,共11页
Gradient structure(GS)possesses a typical trans-scale grain hierarchy with varying internal plastic stability,and the mutual plastic accommodation plays a crucial role in its superior strength-ductility combination.Us... Gradient structure(GS)possesses a typical trans-scale grain hierarchy with varying internal plastic stability,and the mutual plastic accommodation plays a crucial role in its superior strength-ductility combination.Using the in-situ synchrotron X-ray diffraction(XRD)during tensile loading,we measured lattice strains sequentially from the nanostructured(NS)surface layer to the central coarsegrained(CG)layer to elucidate when and how plastic accommodation occurs and evolves within the GS,along with their roles in plastic deformation and strain hardening.Throughout the tensile deformation,two types of plastic incompatibility occur in the GS.One is an extended elastoplastic transition due to layer-by-layer yielding.The other is strain localization and softening in the NS layer,in contrast with the stable plastic deformation in the CG layer.Plastic accommodation thus occurs concurrently and manifests as both an inter-layer and intra-layer change of stress state throughout tensile deformation.This produces different micromechanical responses between layers.Specifically,the NS layer initially experiences strain hardening followed by an elastoplastic deformation.The hetero-deformation induced hardening,along with forest hardening,facilitates a sustainable tensile strain in the NS layer,comparable to that in the CG layer. 展开更多
关键词 gradient structure plastic accommodation strain hardening NANOSTRUCTURE DUCTILITY
原文传递
Inter-zone constraint modifies the stress-strain response of the constituent layer in gradient structure 被引量:2
5
作者 Yanfei Wang Yuntian Zhu +2 位作者 Xiaolei Wu yueguang wei Chongxiang Huang 《Science China Materials》 SCIE EI CAS CSCD 2021年第12期3114-3123,共10页
How an individual constituent zone behaves during the deformation of a heterostructured metallic material is a fundamental issue for understanding heterostructure deformation, but it remains a challenge to experimenta... How an individual constituent zone behaves during the deformation of a heterostructured metallic material is a fundamental issue for understanding heterostructure deformation, but it remains a challenge to experimentally observe it. Here we report a study on the stress-strain behavior of the nanostructured gradient layer(NGL) in an integrated gradient specimen that consists of a coarse-grained(CG)central layer sandwiched between two NGLs. Constraint from the CG central layer led to the formation of dense and dispersed stable strain bands(SBs) in the NGL, which regained dislocation hardening after initial recovery and grain coarsening. Consequently, the NGL exhibited a transient plateau of flow stress after yielding, and then regained extra strain hardening to achieve excellent uniform elongation. These unique behaviors are dramatically different from those of a freestanding NGL, indicating a fundamentally different deformation principle that is intrinsic to heterostructures, i.e.,inter-zone constraint modifies the constitutive behavior of constituent zones. 展开更多
关键词 heterogeneous structure NANOSTRUCTURE stress-strain response strain bands strength and ductility
原文传递
Cross-scale indentation scaling relationships of strain gradient plastic solids:Influence of inclusions near the indenter tip 被引量:1
6
作者 Zhijie Yu yueguang wei 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2022年第1期50-58,共9页
The indentation test is a localized testing technique;therefore,the role of the material size-effect and local non-uniformity is of much importance.The influence of the heterogeneity in size-independent materials has ... The indentation test is a localized testing technique;therefore,the role of the material size-effect and local non-uniformity is of much importance.The influence of the heterogeneity in size-independent materials has been studied previously.The present work detailedly investigated the influence of the material size-effect and heterogeneity(inclusions near the indenter tip)on the indentation hardness using a size-dependent strain gradient plastic theory.And it was found that when considering the material size-ffect,shallow hard inclusions in the heterogeneous materials more significantly enhance the material indentation hardness compared with the size-independent materials which are based on the conventional plastic theory.This hardening effect is be-lieved to be related to the elevation of the load and local constraints of large deformation.The effect of material inhomogeneity mainly comes from the non-uniformity of the structure rather than the inclusion modulus itself especially when the size-effect is involved,and the transition range of the inclusion modulus'influence is pretty narrow.The effect of non-uniformity becomes negligible after the initial inclusion depth is larger than its diameter.The horizontal offset of the indenter from the inclusion is also of much sensitivity to the influence of the heterogeneous indentation.This paper focuses on the scaling relationships in micro-and nanoindentation,the influence of non-uniformity in microscopic materials is studied and supplemented as well. 展开更多
关键词 Scaling relationships Conical nanoindentation Material size-effect Strain gradient theory
原文传递
Identifying the viscoelastic properties of soft matter from the indentation response of a hard film-soft substrate system
7
作者 Yanwei Liu yueguang wei Hao Long 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2020年第4期108-118,共11页
The indentation technique is widely used in measuring the mechanical properties of soft matter at the microscale or nanoscale,but still faces challenges by these unique properties as well as the consequent strong surf... The indentation technique is widely used in measuring the mechanical properties of soft matter at the microscale or nanoscale,but still faces challenges by these unique properties as well as the consequent strong surface adhesion, including the strong nonlinear effect, unclear judgment of the contact point, difficulties in estimating the contact area, and the risk of the indenter piercing the sample. Here we propose a two-step method to solve these problems: lay a hard film on a soft matter, and obtain the viscoelastic properties of this soft matter through the indentation response of this composite structure. We first establish a theoretical indentation model of the hard film-soft substrate system based on the theory of plates, elastic-viscoelastic correspondence principle and Boltzmann superposition principle. To verify the correctness of this method, we measure the mechanical properties of the methyl vinyl silicone rubber(MVSR) covered by a Cu nanofilm. Finally, we test the effectiveness and error sensitivity of this method with the finite element method(FEM). The results show that our method can accurately measure the mechanical properties of soft matter, while effectively circumventing the problems of the traditional indentation technique. 展开更多
关键词 VISCOELASTIC properties SOFT MATTER THEORETICAL INDENTATION model INDENTATION technique FINITE element method
原文传递
SIZE EFFECTS OF ELASTIC MODULUS OF FCC METALS BASED ON THE CAUCHY-BORN RULE AND NANOPLATE MODELS
8
作者 Jianyun Liu Jingru Song yueguang wei 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2014年第2期111-121,共11页
In the present research, a simple quasi-continuum model, the Cauchy-Born rule model, is used to investigate the size effects of elastic modulus for fcc metals. By considering a nanoplate model and calculating the stra... In the present research, a simple quasi-continuum model, the Cauchy-Born rule model, is used to investigate the size effects of elastic modulus for fcc metals. By considering a nanoplate model and calculating the strain energy for the nano-sized plate under tension and bending, the relationship between the elastic modulus and the plate thickness is found. Size effects of the elastic modulus are displayed by the relative differences of the elastic modulus between the nano-sized plate sample and the bulk sample. By comparing the present results with those of others, the effectiveness of the Cauchy-Born rule model in studying the size effects of material properties are shown. 展开更多
关键词 quasi-continuum method Cauchy-Born rule size effect elastic modulus fcc-metal
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部