Obesity and related metabolic syndromes have been recognized as important disease risks,in which the role of adipokines cannot be ignored.Adiponectin(ADP)is one of the key adipokines with various beneficial effects,in...Obesity and related metabolic syndromes have been recognized as important disease risks,in which the role of adipokines cannot be ignored.Adiponectin(ADP)is one of the key adipokines with various beneficial effects,including improving glucose and lipid metabolism,enhancing insulin sensitivity,reducing oxidative stress and inflammation,promoting ceramides degradation,and stimulating adipose tissue vascularity.Based on those,it can serve as a positive regulator in many metabolic syndromes,such as type 2 diabetes(T2D),cardiovascular diseases,non-alcoholic fatty liver disease(NAFLD),sarcopenia,neurodegenerative diseases,and certain cancers.Therefore,a promising therapeutic approach for treating various metabolic diseases may involve elevating ADP levels or activating ADP receptors.The modulation of ADP genes,multimerization,and secretion covers the main processes of ADP generation,providing a comprehensive orientation for the development of more appropriate therapeutic strategies.In order to have a deeper understanding of ADP,this paper will provide an all-encompassing review of ADP.展开更多
[Objectives]To establish the HPLC-DAD fingerprint of Xueshuan Xinmaining Capsule(XXC).[Methods]The chromatographic conditions for the analysis of XXC solution were as follows:XSelect HSS T3 column;acetonitrile-0.1%pho...[Objectives]To establish the HPLC-DAD fingerprint of Xueshuan Xinmaining Capsule(XXC).[Methods]The chromatographic conditions for the analysis of XXC solution were as follows:XSelect HSS T3 column;acetonitrile-0.1%phosphoric acid water was used as mo-bile phase,gradient elution;flow rate:1.0 mL/min;column temperature 30℃;The injection volume is 10μL.The quality of XXC samples produced by different manufacturers was evaluated by similarity evaluation and cluster analysis.[Results]In theHPLC-dad fingerprints of 15 batches of XXC,23 common peaks were identified and 9 peaks were identified,and the similarity was greater than 0.95.According to the re-sults of cluster analysis,15 batches of XXC samples could be divided into two categories,S2,S5,S6,S7 and S8 batches belonged to category Ⅰ,and the rest batches belonged to category Ⅱ.[Conclusions]In this study,a representative and universal identification method of Xxc HPLC-DAD fingerprint was established.The method has high precision,stability and repeatability,is simple and reliable,and provides a pow-erful reference for further improving the quality evaluation system of XXC.展开更多
Text classification has always been an increasingly crucial topic in natural language processing.Traditional text classification methods based on machine learning have many disadvantages such as dimension explosion,da...Text classification has always been an increasingly crucial topic in natural language processing.Traditional text classification methods based on machine learning have many disadvantages such as dimension explosion,data sparsity,limited generalization ability and so on.Based on deep learning text classification,this paper presents an extensive study on the text classification models including Convolutional Neural Network-Based(CNN-Based),Recurrent Neural Network-Based(RNN-based),Attention Mechanisms-Based and so on.Many studies have proved that text classification methods based on deep learning outperform the traditional methods when processing large-scale and complex datasets.The main reasons are text classification methods based on deep learning can avoid cumbersome feature extraction process and have higher prediction accuracy for a large set of unstructured data.In this paper,we also summarize the shortcomings of traditional text classification methods and introduce the text classification process based on deep learning including text preprocessing,distributed representation of text,text classification model construction based on deep learning and performance evaluation.展开更多
Steganography based on generative adversarial networks(GANs)has become a hot topic among researchers.Due to GANs being unsuitable for text fields with discrete characteristics,researchers have proposed GANbased stegan...Steganography based on generative adversarial networks(GANs)has become a hot topic among researchers.Due to GANs being unsuitable for text fields with discrete characteristics,researchers have proposed GANbased steganography methods that are less dependent on text.In this paper,we propose a new method of generative lyrics steganography based on GANs,called GAN-GLS.The proposed method uses the GAN model and the largescale lyrics corpus to construct and train a lyrics generator.In this method,the GAN uses a previously generated line of a lyric as the input sentence in order to generate the next line of the lyric.Using a strategy based on the penalty mechanism in training,the GAN model generates non-repetitive and diverse lyrics.The secret information is then processed according to the data characteristics of the generated lyrics in order to hide information.Unlike other text generation-based linguistic steganographic methods,our method changes the way that multiple generated candidate items are selected as the candidate groups in order to encode the conditional probability distribution.The experimental results demonstrate that our method can generate highquality lyrics as stego-texts.Moreover,compared with other similar methods,the proposed method achieves good performance in terms of imperceptibility,embedding rate,effectiveness,extraction success rate and security.展开更多
Eavesdropping attacks have become one of the most common attacks on networks because of their easy implementation. Eavesdropping attacks not only lead to transmission data leakage but also develop into other more harm...Eavesdropping attacks have become one of the most common attacks on networks because of their easy implementation. Eavesdropping attacks not only lead to transmission data leakage but also develop into other more harmful attacks. Routing randomization is a relevant research direction for moving target defense, which has been proven to be an effective method to resist eavesdropping attacks. To counter eavesdropping attacks, in this study, we analyzed the existing routing randomization methods and found that their security and usability need to be further improved. According to the characteristics of eavesdropping attacks, which are “latent and transferable”, a routing randomization defense method based on deep reinforcement learning is proposed. The proposed method realizes routing randomization on packet-level granularity using programmable switches. To improve the security and quality of service of legitimate services in networks, we use the deep deterministic policy gradient to generate random routing schemes with support from powerful network state awareness. In-band network telemetry provides real-time, accurate, and comprehensive network state awareness for the proposed method. Various experiments show that compared with other typical routing randomization defense methods, the proposed method has obvious advantages in security and usability against eavesdropping attacks.展开更多
Data outsourcing has become an important application of cloud computing.Driven by the growing security demands of data outsourcing applications,sensitive data have to be encrypted before outsourcing.Therefore,how to p...Data outsourcing has become an important application of cloud computing.Driven by the growing security demands of data outsourcing applications,sensitive data have to be encrypted before outsourcing.Therefore,how to properly encrypt data in a way that the encrypted and remotely stored data can still be queried has become a challenging issue.Searchable encryption scheme is proposed to allow users to search over encrypted data.However,most searchable encryption schemes do not consider search result diversification,resulting in information redundancy.In this paper,a verifiable diversity ranking search scheme over encrypted outsourced data is proposed while preserving privacy in cloud computing,which also supports search results verification.The goal is that the ranked documents concerning diversification instead of reading relevant documents that only deliver redundant information.Extensive experiments on real-world dataset validate our analysis and show that our proposed solution is effective for the diversification of documents and verification.展开更多
There has been a strong interest in technologies suited for mining and processing of low-grade ores because of the rapid depletion of mineral resources in the world.In most cases,the extraction of copper from such raw...There has been a strong interest in technologies suited for mining and processing of low-grade ores because of the rapid depletion of mineral resources in the world.In most cases,the extraction of copper from such raw materials is achieved by applying the leaching procedures.However,its low extraction efficiency and the long extraction period limit its large-scale commercial applications in copper recovery,even though bioleaching has been widely employed commercially for heap and dump bioleaching of secondary copper sulfide ores.Overcoming the technical challenges requires a better understanding of leaching kinetics and on-site microbial activities.Herein,this paper reviews the current status of main commercial biomining operations around the world,identifies factors that affect chalcocite dissolution both in chemical leaching and bioleaching,summarizes the related kinetic research,and concludes with a discussion of two on-site chalcocite heap leaching practices.Further,the challenges and innovations for the future development of chalcocite hydrometallurgy are presented in the end.展开更多
Lipid nanoemulsions are promising nanodrug delivery carriers that can improve the efficacy and safety of paclitaxel(PTX).However,no intravenous lipid emulsion of PTX has been approved for clinical treatment,and system...Lipid nanoemulsions are promising nanodrug delivery carriers that can improve the efficacy and safety of paclitaxel(PTX).However,no intravenous lipid emulsion of PTX has been approved for clinical treatment,and systemic safety profiles have not yet been reported.Here we outline the development of a PTXloaded tumor-targeting intravenous lipid emulsion(PTX Emul)and describe its characteristics,colloidal stability,and systemic safety profiles in terms of acute toxicity,long-term toxicity,and toxicokinetics.We also compare PTX Emul with conventional PTX injection.Results showed that PTX Emul exhibited an ideal average particle size(approximately 160 nm)with narrow size distribution and robust colloidal stability under different conditions.Hypersensitivity reaction and hemolysis tests revealed that PTX Emul did not induce hypersensitivity reactions and had no hemolytic potential.In addition,where the alleviated systemic toxicity of PTX Emul may be attributed to the altered toxicokinetic characteristics in beagle dogs,including the decreased AUC and increased plasma clearance and volume of distribution,PTX Emul alleviated acute and long-term toxicity as evidenced by the enhanced the median lethal dose and approximate lethal dose,moderate body weight change,decreased bone marrow suppression and organ toxicity compared with those under PTX injection at the same dose.A fundamental understanding of the systemic safety profiles,high tumor-targeting efficiency,and superior antitumor activity in vivo of PTX Emul can provide powerful evidence of its therapeutic potential as a future treatment for breast cancer.展开更多
In view of the frequent waterlogging caused by rapid urbanization and the public’s dissatisfaction with the drainage system,the article based on the concept of the green ecological drainage system,constructed the urb...In view of the frequent waterlogging caused by rapid urbanization and the public’s dissatisfaction with the drainage system,the article based on the concept of the green ecological drainage system,constructed the urban green ecological drainage comprehensive simulation research system,and quickly evaluated pipe network operation and surface water of an industrial park under typical rainfall conditions.The results showed that the drainage capacity of the designed green ecological rainwater drainage system reached 100%,and there was no ponding phenomenon,which indicated that the green ecological rainwater drainage system could effectively solve the practical problems of urban drainage.The green ecological rainwater comprehensive simulation research system had good adaptability.The research results provided the scientific theoretical basis and reference significance for planning,designing,constructing,operating,and managing urban rainwater system scientifically and systematically.展开更多
Nowadays,cloud computing is used more and more widely,more and more people prefer to using cloud server to store data.So,how to encrypt the data efficiently is an important problem.The search efficiency of existed sea...Nowadays,cloud computing is used more and more widely,more and more people prefer to using cloud server to store data.So,how to encrypt the data efficiently is an important problem.The search efficiency of existed search schemes decreases as the index increases.For solving this problem,we build the two-level index.Simultaneously,for improving the semantic information,the central word expansion is combined.The purpose of privacy-preserving content-aware search by using the two-level index(CKESS)is that the first matching is performed by using the extended central words,then calculate the similarity between the trapdoor and the secondary index,finally return the results in turn.Through experiments and analysis,it is proved that our proposed schemes can resist multiple threat models and the schemes are secure and efficient.展开更多
Today is the era of information technology, information technology has already penetrated into people' s life, not only that, nowin the education teaching is a common phenomenon, of course, in Chinese has been more t...Today is the era of information technology, information technology has already penetrated into people' s life, not only that, nowin the education teaching is a common phenomenon, of course, in Chinese has been more than ten years of new curriculum reform, but due tovarious reasons, the performance of the new curriculum is not ideal, in the western teaching. We learn from the experience, the implementationof the flip classroom change. This change is Chinese education has progress In this paper, how to realize the "flipped classroom learning" flipelaborated what is flipped classroom, flip the classroom principle, implementation status, significance and effect of the implementation of Chinaflipping the classroom and flipping the classroom according to the status of recommendations.展开更多
Increasing soil salinization has led to severe reductions in plant yield and quality,and investigating the mo-lecular mechanism of salt stress response is therefore an urgent priority.In this study,we systematically a...Increasing soil salinization has led to severe reductions in plant yield and quality,and investigating the mo-lecular mechanism of salt stress response is therefore an urgent priority.In this study,we systematically analyzed the response of cotton roots to salt stress using single-cell transcriptomics technology;56281 high-quality cells were obtained from 5-day-old lateral root tips of Gossypium arboreum under natural growth conditions and different salt treatments.Ten cell types with an array of novel marker genes were identified and confirmed by in situ RNA hybridization,and pseudotime analysis of some specific cell types revealed their potential differentiation trajectories.Prominent changes in cell numbers under salt stress were observed for outer epidermal and inner endodermal cells,which were significantly enriched in response to stress,amide biosynthetic process,glutathione metabolism,and glycolysis/gluconeogenesis.Analysis of differentially expressed genes identified in multiple comparisons revealed other functional ag-gregations concentrated on plant-type primary cell wall biogenesis,defense response,phenylpropanoid biosynthesis,and metabolic pathways.Some candidate differentially expressed genes encoding transcrip-tion factors or associated with plant hormones also responsive to salt stress were identified,and the func-tion of Ga03G2153,annotated as auxin-responsive GH3.6,was confirmed by virus-induced gene silencing.The GaGH3.6-silenced plants showed a severe stress-susceptible phenotype,and physiological and biochemical measurements indicated that they suffered more significant oxidative damage.These results suggest that GaGH3.6 might participate in cotton salt tolerance by regulating redox processes.We thus construct a transcriptional atlas of salt-stressed cotton roots at single-cell resolution,enabling us to explore cellular heterogeneity and differentiation trajectories and providing valuable insights into the mo-lecular mechanisms that underlie plant stress tolerance.展开更多
Calcium-based biomaterials have been intensively studied in the field of drug delivery owing to their excellent biocompatibility and biodegradability.Calcium-based materials can also deliver contrast agents,which can ...Calcium-based biomaterials have been intensively studied in the field of drug delivery owing to their excellent biocompatibility and biodegradability.Calcium-based materials can also deliver contrast agents,which can enhance real-time imaging and exert a Ca^(2+)-interfering therapeutic effect.Based on these characteristics,amorphous calcium carbonate(ACC),as a brunch of calcium-based biomaterials,has the potential to become a widely used biomaterial.Highly functional ACC can be either discovered in natural organisms or obtained by chemical synthesis However,the standalone presence of ACC is unstable in vivo.Additives are required to be used as stabilizers or core-shell structures formed by permeable layers or lipids with modified molecules constructed to maintain the stability of ACC until the ACC carrier reaches its destination.ACC has high chemical instability and can produce biocompatible products when exposed to an acidic condition in vivo,such as Ca^(2+) with an immune-regulating ability and CO_(2) with an imaging-enhancing ability.Owing to these characteristics,ACC has been studied for selfsacrificing templates of carrier construction,targeted delivery of oncology drugs,immunomodulation,tumor imaging,tissue engineering,and calcium supplementation.Emphasis in this paper has been placed on the origin,structural features,and multiple applications of ACC.Meanwhile,ACC faces many challenges in clinical translation,and long-term basic research is required to overcome these challenges.We hope that this study will contribute to future innovative research on ACC.展开更多
Ulcerative colitis(UC)is a chronic inflammatory bowel disease characterized by persistent inflammation of the colon and disrupted intestinal function.Ramulus mori(Sangzhi)alkaloids(SZ-A),derived from twigs of mulberry...Ulcerative colitis(UC)is a chronic inflammatory bowel disease characterized by persistent inflammation of the colon and disrupted intestinal function.Ramulus mori(Sangzhi)alkaloids(SZ-A),derived from twigs of mulberry,were approved by the National Medical Products Administration in 2020 for treating type 2 diabetes mellitus.Accumulated evidence has confirmed that SZ-A also alleviates non-alcoholic fatty liver disease and ameliorates inflammation,indicating its potential to address inflammation in UC.However,the treatment of UC faces challenges due to low drug delivery efficiency and short retention time.To overcome these challenges,an injectable and adherent in-situ thermo-sensitive hydrogel containing SZ-A was developed for rectal drug delivery,utilizing the thermo-sensitive polymers Poloxamer 407and 188.The thermo-sensitive hydrogel system was designed with a moderate gelation temperature of 32±0.5℃,a short gelation time of 64 s,a p H range of 7-10,high moisturizing capability exceeding 90%,and moderate mechanical strength of 4-5 s.In a rat model with UC,the in situ thermo-sensitive hydrogel significantly extended the retention time at the colonic site and enabled sustained release after rectal administration.Symptoms of UC were markedly reduced following rectal administration of SZ-A thermosensitive hydrogel.Furthermore,the release of inflammatory factors,such as interleukin-1β(IL-1β),IL-6,IL-18,tumor necrosis factor-α(TNF-α),and transforming growth factor-β1(TGF-β1),significantly decreased in the SZ-A thermo-sensitive hydrogel group.The integrity of the colonic mucosal barrier was significantly enhanced following the application of SZ-A thermo-sensitive hydrogel.In conclusion,rectal administration of SZ-A in situ thermo-sensitive hydrogel effectively alleviated UC symptoms,inhibited the secretion of inflammatory factors,and promoted the repair of the colonic mucosal barrier.This approach holds promise as a potential treatment for UC.展开更多
Cotton(Gossypium)stands as a crucial economic crop,serving as the primary source of naturalfiber for the textile sector.However,the evolutionary mechanisms driving speciation within the Gossypium genus remain unresolv...Cotton(Gossypium)stands as a crucial economic crop,serving as the primary source of naturalfiber for the textile sector.However,the evolutionary mechanisms driving speciation within the Gossypium genus remain unresolved.In this investigation,we leveraged 25 Gossypium genomes and introduced four novel assem-blies—G.harknessii,G.gossypioides,G.trilobum,and G.klotzschianum(Gklo)—to delve into the speciation history of this genus.Notably,we encountered intricate phylogenies potentially stemming from introgres-sion.These complexities are further compounded by incomplete lineage sorting(ILS),a factor likely to have been instrumental in shaping the swift diversification of cotton.Our focus subsequently shifted to the rapid radiation episode during a concise period in Gossypium evolution.For a recently diverged lineage comprising G.davidsonii,Gklo,and G.raimondii,we constructed afinely detailed ILS map.Intriguingly,this analysis revealed the non-random distribution of ILS regions across the reference Gklo genome.Moreover,we identified signs of robust natural selection influencing specific ILS regions.Noteworthy variations per-taining to speciation emerged between the closely related sister species Gklo and G.davidsonii.Approxi-mately 15.74%of speciation structural variation genes and 12.04%of speciation-associated genes were esti-mated to intersect with ILS signatures.Thesefindings enrich our understanding of the role of ILS in adaptive radiation,shedding fresh light on the intricate speciation history of the Gossypium genus.展开更多
Ulcerative colitis(UC)is a common progressive inflammatory disease whose incidence has increased rapidly in recent years,and can develop into colorectal cancer in severe cases.There are currently no adequate or effect...Ulcerative colitis(UC)is a common progressive inflammatory disease whose incidence has increased rapidly in recent years,and can develop into colorectal cancer in severe cases.There are currently no adequate or effective treatments for UC due to the fact that some patients have found suboptimal results after repeated administration,while others have experienced adverse effects.With the rapid development of nanotechnology,developing innovative colon-targeting platforms is essential to improving efficacy,reducing side effects,and improving patient compliance.In this review,we summarize the pathophysiological characteristics of UC and the most recent status of numerous nanodrug delivery systems based on different targeting mechanisms in treating UC.Oral,intravenous,and rectal drug delivery nanoparticles targeting the colon are discussed,which can provide ideas for the design of colon-targeting nanoparticles for the treatment of colon diseases,especially for the treatment of UC.Last but not least,we provide a glimpse into the future of colon-targeted delivery systems,as well as future advancements in the field.展开更多
基金supported by the grants from the CAMS Innovation Fund for Medical Sciences(CIFMS)(Grant No.:2021-I2M-1-026)the Beijing Natural Science Foundation of China(Grant Nos.:7212155 and 7162135).
文摘Obesity and related metabolic syndromes have been recognized as important disease risks,in which the role of adipokines cannot be ignored.Adiponectin(ADP)is one of the key adipokines with various beneficial effects,including improving glucose and lipid metabolism,enhancing insulin sensitivity,reducing oxidative stress and inflammation,promoting ceramides degradation,and stimulating adipose tissue vascularity.Based on those,it can serve as a positive regulator in many metabolic syndromes,such as type 2 diabetes(T2D),cardiovascular diseases,non-alcoholic fatty liver disease(NAFLD),sarcopenia,neurodegenerative diseases,and certain cancers.Therefore,a promising therapeutic approach for treating various metabolic diseases may involve elevating ADP levels or activating ADP receptors.The modulation of ADP genes,multimerization,and secretion covers the main processes of ADP generation,providing a comprehensive orientation for the development of more appropriate therapeutic strategies.In order to have a deeper understanding of ADP,this paper will provide an all-encompassing review of ADP.
文摘[Objectives]To establish the HPLC-DAD fingerprint of Xueshuan Xinmaining Capsule(XXC).[Methods]The chromatographic conditions for the analysis of XXC solution were as follows:XSelect HSS T3 column;acetonitrile-0.1%phosphoric acid water was used as mo-bile phase,gradient elution;flow rate:1.0 mL/min;column temperature 30℃;The injection volume is 10μL.The quality of XXC samples produced by different manufacturers was evaluated by similarity evaluation and cluster analysis.[Results]In theHPLC-dad fingerprints of 15 batches of XXC,23 common peaks were identified and 9 peaks were identified,and the similarity was greater than 0.95.According to the re-sults of cluster analysis,15 batches of XXC samples could be divided into two categories,S2,S5,S6,S7 and S8 batches belonged to category Ⅰ,and the rest batches belonged to category Ⅱ.[Conclusions]In this study,a representative and universal identification method of Xxc HPLC-DAD fingerprint was established.The method has high precision,stability and repeatability,is simple and reliable,and provides a pow-erful reference for further improving the quality evaluation system of XXC.
基金This work supported in part by the National Natural Science Foundation of China under Grant 61872134,in part by the Natural Science Foundation of Hunan Province under Grant 2018JJ2062in part by Science and Technology Development Center of the Ministry of Education under Grant 2019J01020in part by the 2011 Collaborative Innovative Center for Development and Utilization of Finance and Economics Big Data Property,Universities of Hunan Province。
文摘Text classification has always been an increasingly crucial topic in natural language processing.Traditional text classification methods based on machine learning have many disadvantages such as dimension explosion,data sparsity,limited generalization ability and so on.Based on deep learning text classification,this paper presents an extensive study on the text classification models including Convolutional Neural Network-Based(CNN-Based),Recurrent Neural Network-Based(RNN-based),Attention Mechanisms-Based and so on.Many studies have proved that text classification methods based on deep learning outperform the traditional methods when processing large-scale and complex datasets.The main reasons are text classification methods based on deep learning can avoid cumbersome feature extraction process and have higher prediction accuracy for a large set of unstructured data.In this paper,we also summarize the shortcomings of traditional text classification methods and introduce the text classification process based on deep learning including text preprocessing,distributed representation of text,text classification model construction based on deep learning and performance evaluation.
基金This work was supported in part by the National Natural Science Foundation of China under Grant 61872134,61672222,author Y.L.Liu,http://www.nsfc.gov.cn/in part by Science and Technology Development Center of the Ministry of Education under Grant 2019J01020,author Y.L.Liu,http://www.moe.gov.cn/+1 种基金in part by Science and Technology Project of Transport Department of Hunan Province under Grant 201935,author Y.L.Liu,http://jtt.hunan.gov.cn/Science and Technology Program of Changsha City under Grant kh200519,kq2004021,author Y.L.Liu,http://kjj.changsha.gov.cn/.
文摘Steganography based on generative adversarial networks(GANs)has become a hot topic among researchers.Due to GANs being unsuitable for text fields with discrete characteristics,researchers have proposed GANbased steganography methods that are less dependent on text.In this paper,we propose a new method of generative lyrics steganography based on GANs,called GAN-GLS.The proposed method uses the GAN model and the largescale lyrics corpus to construct and train a lyrics generator.In this method,the GAN uses a previously generated line of a lyric as the input sentence in order to generate the next line of the lyric.Using a strategy based on the penalty mechanism in training,the GAN model generates non-repetitive and diverse lyrics.The secret information is then processed according to the data characteristics of the generated lyrics in order to hide information.Unlike other text generation-based linguistic steganographic methods,our method changes the way that multiple generated candidate items are selected as the candidate groups in order to encode the conditional probability distribution.The experimental results demonstrate that our method can generate highquality lyrics as stego-texts.Moreover,compared with other similar methods,the proposed method achieves good performance in terms of imperceptibility,embedding rate,effectiveness,extraction success rate and security.
文摘Eavesdropping attacks have become one of the most common attacks on networks because of their easy implementation. Eavesdropping attacks not only lead to transmission data leakage but also develop into other more harmful attacks. Routing randomization is a relevant research direction for moving target defense, which has been proven to be an effective method to resist eavesdropping attacks. To counter eavesdropping attacks, in this study, we analyzed the existing routing randomization methods and found that their security and usability need to be further improved. According to the characteristics of eavesdropping attacks, which are “latent and transferable”, a routing randomization defense method based on deep reinforcement learning is proposed. The proposed method realizes routing randomization on packet-level granularity using programmable switches. To improve the security and quality of service of legitimate services in networks, we use the deep deterministic policy gradient to generate random routing schemes with support from powerful network state awareness. In-band network telemetry provides real-time, accurate, and comprehensive network state awareness for the proposed method. Various experiments show that compared with other typical routing randomization defense methods, the proposed method has obvious advantages in security and usability against eavesdropping attacks.
基金This work is supported,in part,by the National Natural Science Foundation of China under grant numbers 61103215in part,by Hunan Provincial Natural Science Foundation of China.
文摘Data outsourcing has become an important application of cloud computing.Driven by the growing security demands of data outsourcing applications,sensitive data have to be encrypted before outsourcing.Therefore,how to properly encrypt data in a way that the encrypted and remotely stored data can still be queried has become a challenging issue.Searchable encryption scheme is proposed to allow users to search over encrypted data.However,most searchable encryption schemes do not consider search result diversification,resulting in information redundancy.In this paper,a verifiable diversity ranking search scheme over encrypted outsourced data is proposed while preserving privacy in cloud computing,which also supports search results verification.The goal is that the ranked documents concerning diversification instead of reading relevant documents that only deliver redundant information.Extensive experiments on real-world dataset validate our analysis and show that our proposed solution is effective for the diversification of documents and verification.
基金supported by the National Natural Science Foundation of China(U1932129,51774332,51934009 and 52004086)Natural Science Foundation of Hunan Province(No.2018JJ1041),Fundamental Research Funds for the Central Universities of Central South University(Nos.2021zzts0301 and 2021zzts0299)。
文摘There has been a strong interest in technologies suited for mining and processing of low-grade ores because of the rapid depletion of mineral resources in the world.In most cases,the extraction of copper from such raw materials is achieved by applying the leaching procedures.However,its low extraction efficiency and the long extraction period limit its large-scale commercial applications in copper recovery,even though bioleaching has been widely employed commercially for heap and dump bioleaching of secondary copper sulfide ores.Overcoming the technical challenges requires a better understanding of leaching kinetics and on-site microbial activities.Herein,this paper reviews the current status of main commercial biomining operations around the world,identifies factors that affect chalcocite dissolution both in chemical leaching and bioleaching,summarizes the related kinetic research,and concludes with a discussion of two on-site chalcocite heap leaching practices.Further,the challenges and innovations for the future development of chalcocite hydrometallurgy are presented in the end.
基金supported by the National Science and Technology Major Project of China(Grant No.:2018ZX09711001)Beijing Nova Program(Grant No.:Z211100002121127)+2 种基金Beijing Natural Science Foundation(Grant No.:L212059)Fundamental Research Funds for the Central Universities(Grant No.:3332021101)CAMS Innovation Fund for Medical Sciences(CIFMS,Grant No.:2022-I2M-JB-011).
文摘Lipid nanoemulsions are promising nanodrug delivery carriers that can improve the efficacy and safety of paclitaxel(PTX).However,no intravenous lipid emulsion of PTX has been approved for clinical treatment,and systemic safety profiles have not yet been reported.Here we outline the development of a PTXloaded tumor-targeting intravenous lipid emulsion(PTX Emul)and describe its characteristics,colloidal stability,and systemic safety profiles in terms of acute toxicity,long-term toxicity,and toxicokinetics.We also compare PTX Emul with conventional PTX injection.Results showed that PTX Emul exhibited an ideal average particle size(approximately 160 nm)with narrow size distribution and robust colloidal stability under different conditions.Hypersensitivity reaction and hemolysis tests revealed that PTX Emul did not induce hypersensitivity reactions and had no hemolytic potential.In addition,where the alleviated systemic toxicity of PTX Emul may be attributed to the altered toxicokinetic characteristics in beagle dogs,including the decreased AUC and increased plasma clearance and volume of distribution,PTX Emul alleviated acute and long-term toxicity as evidenced by the enhanced the median lethal dose and approximate lethal dose,moderate body weight change,decreased bone marrow suppression and organ toxicity compared with those under PTX injection at the same dose.A fundamental understanding of the systemic safety profiles,high tumor-targeting efficiency,and superior antitumor activity in vivo of PTX Emul can provide powerful evidence of its therapeutic potential as a future treatment for breast cancer.
文摘In view of the frequent waterlogging caused by rapid urbanization and the public’s dissatisfaction with the drainage system,the article based on the concept of the green ecological drainage system,constructed the urban green ecological drainage comprehensive simulation research system,and quickly evaluated pipe network operation and surface water of an industrial park under typical rainfall conditions.The results showed that the drainage capacity of the designed green ecological rainwater drainage system reached 100%,and there was no ponding phenomenon,which indicated that the green ecological rainwater drainage system could effectively solve the practical problems of urban drainage.The green ecological rainwater comprehensive simulation research system had good adaptability.The research results provided the scientific theoretical basis and reference significance for planning,designing,constructing,operating,and managing urban rainwater system scientifically and systematically.
基金This work is supported by the National Natural Science Foundation of China under grant U1836110,U1836208,U1536206,61602253,61672294by the National Key R&D Program of China under grant 2018YFB1003205+5 种基金by China Postdoctoral Science Foundation(2017M610574)by the Jiangsu Basic Research Programs-Natural Science Foundation under grant numbers BK20181407by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)fundby the Major Program of the National Social Science Fund of China(17ZDA092)Qing Lan Projectby the Collaborative Innovation Center of Atmospheric Environment and Equipment Technology(CICAEET)fund,China.
文摘Nowadays,cloud computing is used more and more widely,more and more people prefer to using cloud server to store data.So,how to encrypt the data efficiently is an important problem.The search efficiency of existed search schemes decreases as the index increases.For solving this problem,we build the two-level index.Simultaneously,for improving the semantic information,the central word expansion is combined.The purpose of privacy-preserving content-aware search by using the two-level index(CKESS)is that the first matching is performed by using the extended central words,then calculate the similarity between the trapdoor and the secondary index,finally return the results in turn.Through experiments and analysis,it is proved that our proposed schemes can resist multiple threat models and the schemes are secure and efficient.
文摘Today is the era of information technology, information technology has already penetrated into people' s life, not only that, nowin the education teaching is a common phenomenon, of course, in Chinese has been more than ten years of new curriculum reform, but due tovarious reasons, the performance of the new curriculum is not ideal, in the western teaching. We learn from the experience, the implementationof the flip classroom change. This change is Chinese education has progress In this paper, how to realize the "flipped classroom learning" flipelaborated what is flipped classroom, flip the classroom principle, implementation status, significance and effect of the implementation of Chinaflipping the classroom and flipping the classroom according to the status of recommendations.
基金supported by the National Natural Science Foundation of China (31471548,32272179,and 31801404)the Central Plains Science and Technology Innovation Leader Project (214200510029)+4 种基金the Program for Innovative Research Team (in Science and Technology)in University of Henan Province (20IRTSTHN021)the Science and Technology Development Project of Anyang City (2022C01NY001 and 2022C01NY003)the Doctoral and Postdoctoral Research Fund of Anyang Institute of Technology (BSJ2019014 and BHJ2020002)the Key Scientific Research Project of Henan Higher Education Institutions of China (20A210006)the Zhongyuan Scholars Workstation (224400510020).
文摘Increasing soil salinization has led to severe reductions in plant yield and quality,and investigating the mo-lecular mechanism of salt stress response is therefore an urgent priority.In this study,we systematically analyzed the response of cotton roots to salt stress using single-cell transcriptomics technology;56281 high-quality cells were obtained from 5-day-old lateral root tips of Gossypium arboreum under natural growth conditions and different salt treatments.Ten cell types with an array of novel marker genes were identified and confirmed by in situ RNA hybridization,and pseudotime analysis of some specific cell types revealed their potential differentiation trajectories.Prominent changes in cell numbers under salt stress were observed for outer epidermal and inner endodermal cells,which were significantly enriched in response to stress,amide biosynthetic process,glutathione metabolism,and glycolysis/gluconeogenesis.Analysis of differentially expressed genes identified in multiple comparisons revealed other functional ag-gregations concentrated on plant-type primary cell wall biogenesis,defense response,phenylpropanoid biosynthesis,and metabolic pathways.Some candidate differentially expressed genes encoding transcrip-tion factors or associated with plant hormones also responsive to salt stress were identified,and the func-tion of Ga03G2153,annotated as auxin-responsive GH3.6,was confirmed by virus-induced gene silencing.The GaGH3.6-silenced plants showed a severe stress-susceptible phenotype,and physiological and biochemical measurements indicated that they suffered more significant oxidative damage.These results suggest that GaGH3.6 might participate in cotton salt tolerance by regulating redox processes.We thus construct a transcriptional atlas of salt-stressed cotton roots at single-cell resolution,enabling us to explore cellular heterogeneity and differentiation trajectories and providing valuable insights into the mo-lecular mechanisms that underlie plant stress tolerance.
基金supported by Beijing Nova Program(Z211100002121127 and 20220484219,China)Beijing Natural Science Foundation(L212059,China)+1 种基金Fundamental Research Funds for the Central Universities(3332021101,China)CAMS Innovation Fund for Medical Sciences(CIFMS,2021-I2M-1-026 and 2021-I2M-1-028,China).
文摘Calcium-based biomaterials have been intensively studied in the field of drug delivery owing to their excellent biocompatibility and biodegradability.Calcium-based materials can also deliver contrast agents,which can enhance real-time imaging and exert a Ca^(2+)-interfering therapeutic effect.Based on these characteristics,amorphous calcium carbonate(ACC),as a brunch of calcium-based biomaterials,has the potential to become a widely used biomaterial.Highly functional ACC can be either discovered in natural organisms or obtained by chemical synthesis However,the standalone presence of ACC is unstable in vivo.Additives are required to be used as stabilizers or core-shell structures formed by permeable layers or lipids with modified molecules constructed to maintain the stability of ACC until the ACC carrier reaches its destination.ACC has high chemical instability and can produce biocompatible products when exposed to an acidic condition in vivo,such as Ca^(2+) with an immune-regulating ability and CO_(2) with an imaging-enhancing ability.Owing to these characteristics,ACC has been studied for selfsacrificing templates of carrier construction,targeted delivery of oncology drugs,immunomodulation,tumor imaging,tissue engineering,and calcium supplementation.Emphasis in this paper has been placed on the origin,structural features,and multiple applications of ACC.Meanwhile,ACC faces many challenges in clinical translation,and long-term basic research is required to overcome these challenges.We hope that this study will contribute to future innovative research on ACC.
基金financially supported by the National Natural Science Foundation(No.82304393,China)Beijing Nova Program(Nos.Z211100002121127 and 20220484219,China)+1 种基金Beijing Natural Science Foundation(No.L212059,China)CAMS Innovation Fund for Medical Sciences(No.2021-I2M-1-028,China)。
文摘Ulcerative colitis(UC)is a chronic inflammatory bowel disease characterized by persistent inflammation of the colon and disrupted intestinal function.Ramulus mori(Sangzhi)alkaloids(SZ-A),derived from twigs of mulberry,were approved by the National Medical Products Administration in 2020 for treating type 2 diabetes mellitus.Accumulated evidence has confirmed that SZ-A also alleviates non-alcoholic fatty liver disease and ameliorates inflammation,indicating its potential to address inflammation in UC.However,the treatment of UC faces challenges due to low drug delivery efficiency and short retention time.To overcome these challenges,an injectable and adherent in-situ thermo-sensitive hydrogel containing SZ-A was developed for rectal drug delivery,utilizing the thermo-sensitive polymers Poloxamer 407and 188.The thermo-sensitive hydrogel system was designed with a moderate gelation temperature of 32±0.5℃,a short gelation time of 64 s,a p H range of 7-10,high moisturizing capability exceeding 90%,and moderate mechanical strength of 4-5 s.In a rat model with UC,the in situ thermo-sensitive hydrogel significantly extended the retention time at the colonic site and enabled sustained release after rectal administration.Symptoms of UC were markedly reduced following rectal administration of SZ-A thermosensitive hydrogel.Furthermore,the release of inflammatory factors,such as interleukin-1β(IL-1β),IL-6,IL-18,tumor necrosis factor-α(TNF-α),and transforming growth factor-β1(TGF-β1),significantly decreased in the SZ-A thermo-sensitive hydrogel group.The integrity of the colonic mucosal barrier was significantly enhanced following the application of SZ-A thermo-sensitive hydrogel.In conclusion,rectal administration of SZ-A in situ thermo-sensitive hydrogel effectively alleviated UC symptoms,inhibited the secretion of inflammatory factors,and promoted the repair of the colonic mucosal barrier.This approach holds promise as a potential treatment for UC.
基金the National Natural Science Foundation of China (32272090,32171994,and 32072023)the Central Plains Science and Technology Innovation Leader Project (214200510029 and 2022C01NY001)+1 种基金the Project of Sanya Yazhou Bay Science and Technology City (SCKY-JYRC-2022-88)the National Key R&D Program of China (2021YFE0101200)for financial support.
文摘Cotton(Gossypium)stands as a crucial economic crop,serving as the primary source of naturalfiber for the textile sector.However,the evolutionary mechanisms driving speciation within the Gossypium genus remain unresolved.In this investigation,we leveraged 25 Gossypium genomes and introduced four novel assem-blies—G.harknessii,G.gossypioides,G.trilobum,and G.klotzschianum(Gklo)—to delve into the speciation history of this genus.Notably,we encountered intricate phylogenies potentially stemming from introgres-sion.These complexities are further compounded by incomplete lineage sorting(ILS),a factor likely to have been instrumental in shaping the swift diversification of cotton.Our focus subsequently shifted to the rapid radiation episode during a concise period in Gossypium evolution.For a recently diverged lineage comprising G.davidsonii,Gklo,and G.raimondii,we constructed afinely detailed ILS map.Intriguingly,this analysis revealed the non-random distribution of ILS regions across the reference Gklo genome.Moreover,we identified signs of robust natural selection influencing specific ILS regions.Noteworthy variations per-taining to speciation emerged between the closely related sister species Gklo and G.davidsonii.Approxi-mately 15.74%of speciation structural variation genes and 12.04%of speciation-associated genes were esti-mated to intersect with ILS signatures.Thesefindings enrich our understanding of the role of ILS in adaptive radiation,shedding fresh light on the intricate speciation history of the Gossypium genus.
基金financially supported by Beijing Nova Program(Nos.Z211100002121127 and 20220484219)Beijing Natural Science Foundation(No.L212059)+1 种基金Fundamental Research Funds for the Central Universities(No.3332021101)CAMS Innovation Fund for Medical Sciences(CIFMS,Nos.2021-I2M-1-026 and 2021-I2M-1-028).
文摘Ulcerative colitis(UC)is a common progressive inflammatory disease whose incidence has increased rapidly in recent years,and can develop into colorectal cancer in severe cases.There are currently no adequate or effective treatments for UC due to the fact that some patients have found suboptimal results after repeated administration,while others have experienced adverse effects.With the rapid development of nanotechnology,developing innovative colon-targeting platforms is essential to improving efficacy,reducing side effects,and improving patient compliance.In this review,we summarize the pathophysiological characteristics of UC and the most recent status of numerous nanodrug delivery systems based on different targeting mechanisms in treating UC.Oral,intravenous,and rectal drug delivery nanoparticles targeting the colon are discussed,which can provide ideas for the design of colon-targeting nanoparticles for the treatment of colon diseases,especially for the treatment of UC.Last but not least,we provide a glimpse into the future of colon-targeted delivery systems,as well as future advancements in the field.