Transverse localization of the optical Tamm plasmon (OTP) is studied in a metal-distributed Bragg reflector (DBR) structure with a one-dimensional disordered layer embedded at the interface between the metal and t...Transverse localization of the optical Tamm plasmon (OTP) is studied in a metal-distributed Bragg reflector (DBR) structure with a one-dimensional disordered layer embedded at the interface between the metal and the DBR. The embed- ded disordered layer induces multiple scattering and interference of light, forming the light localization in the transverse direction. This together with the formation of Tamm plasmonic modes at the metal-DBR interface (i.e., the confinement of light in the longitudinal direction), gives birth to the so called transverse-localized Tamm plasmon. It is shown that for both transverse electric (TE) and transverse magnetic (TM) polarized light injection, the excited transverse-localized Tamm plas- mon broadens and splits the dispersion curve due to spatial incoherence in the transverse direction, thus proving the stronger light confinement especially in the TE polarized injection. By adding the gain medium, specific random lasing modes are observed. The proposed study could be an efficient way of trapping and locally enhancing light on a subwavelength scale, which is useful in applications of random lasers, optical sensing, and imaging.展开更多
This paper presents a novel miniaturized fiber-optic Fabry-Peort interferometer (FPI) for highly sensitive refractive index measurement. This device was tested for the refractive indices of various liquids including...This paper presents a novel miniaturized fiber-optic Fabry-Peort interferometer (FPI) for highly sensitive refractive index measurement. This device was tested for the refractive indices of various liquids including acetone and ethanol at room temperature. The sensitivity for measurement of refractive index change of ethanol is 1138 nm/RIU at the wavelength of 1550 nm. In addition, the sensor fabrication is simple including only cleaving, splicing, and etching. The signal is stable with high visibility. Therefore, it provides a valuable tool in biological and chemical applications.展开更多
This special issue in the Journal of Electronic Science & Technology of China (JESTC) contains the selected papers presented at the 1st Asia-Pacific Optical Fiber Sensors Conference (APOS2008) organized by Univer...This special issue in the Journal of Electronic Science & Technology of China (JESTC) contains the selected papers presented at the 1st Asia-Pacific Optical Fiber Sensors Conference (APOS2008) organized by University of Electronic Science and Technology of China and Chongqing University, China. This conference is supported by Ministry of Education of the People's Republic of China, National Nature Science Foundation of China (NSFC), and Chinese Optics Society (COS).展开更多
A fiber-optical intrusion alarm system based on quasi-distributed fiber Bragg grating (FBG) sensors is demonstrated in this paper. The algorithms of empirical mode decomposition (EMD) and wavelet packet characteri...A fiber-optical intrusion alarm system based on quasi-distributed fiber Bragg grating (FBG) sensors is demonstrated in this paper. The algorithms of empirical mode decomposition (EMD) and wavelet packet characteristic entropy are adopted to determine the intrusion location. The intrusion alarm software based on the Labview is developed, and it is also proved by the experiments. The results show that such a fiber-optical intrusion alarm system can offer the automatic intrusion alarm in real-time.展开更多
Biomarker detection is key to identifying health risks.However,designing sensitive and single-use biosensors for early diagnosis remains a major challenge.Here,we report submonolayer lasers on optical fibers as ultras...Biomarker detection is key to identifying health risks.However,designing sensitive and single-use biosensors for early diagnosis remains a major challenge.Here,we report submonolayer lasers on optical fibers as ultrasensitive and disposable biosensors.Telecom optical fibers serve as distributed optical microcavities with high Q-factor,great repeatability,and ultralow cost,which enables whispering-gallery laser emission to detect biomarkers.It is found that the sensing performance strongly depends on the number of gain molecules.The submonolayer lasers obtained a six-order-of-magnitude improvement in the lower limit of detection(LOD)when compared to saturated monolayer lasers.We further achieve an ultrasensitive immunoassay for a Parkinson's disease biomarker,alpha-synuclein(α-syn),with a lower LOD of 0.32 pM in serum,which is three orders of magnitude lower than theα-syn concentration in the serum of Parkinson's disease patients.Our demonstration of submonolayer biolaser offers great potentials in high-throughput clinical diagnosis with ultimate sensitivity.展开更多
Dear colleagues and friends,I am delighted to announce the opening of our Special Issue in Photonic Sensors,"OFS advances over the past 10 years".As you know,our journal enters its 10th successful year of pu...Dear colleagues and friends,I am delighted to announce the opening of our Special Issue in Photonic Sensors,"OFS advances over the past 10 years".As you know,our journal enters its 10th successful year of publication in 2021.I appreciate your support as readers,authors or reviewers for the Photonic Sensors journal.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61575040 and 61635005)the 111 Project,China(Grant No.B14039)
文摘Transverse localization of the optical Tamm plasmon (OTP) is studied in a metal-distributed Bragg reflector (DBR) structure with a one-dimensional disordered layer embedded at the interface between the metal and the DBR. The embed- ded disordered layer induces multiple scattering and interference of light, forming the light localization in the transverse direction. This together with the formation of Tamm plasmonic modes at the metal-DBR interface (i.e., the confinement of light in the longitudinal direction), gives birth to the so called transverse-localized Tamm plasmon. It is shown that for both transverse electric (TE) and transverse magnetic (TM) polarized light injection, the excited transverse-localized Tamm plas- mon broadens and splits the dispersion curve due to spatial incoherence in the transverse direction, thus proving the stronger light confinement especially in the TE polarized injection. By adding the gain medium, specific random lasing modes are observed. The proposed study could be an efficient way of trapping and locally enhancing light on a subwavelength scale, which is useful in applications of random lasers, optical sensing, and imaging.
基金supported by the Key Project of Natural Science Foundation of China under Grant No. 60537040the Natural Science Foundation Project of CQ CSTC under Grant No. 2007BB3125
文摘This paper presents a novel miniaturized fiber-optic Fabry-Peort interferometer (FPI) for highly sensitive refractive index measurement. This device was tested for the refractive indices of various liquids including acetone and ethanol at room temperature. The sensitivity for measurement of refractive index change of ethanol is 1138 nm/RIU at the wavelength of 1550 nm. In addition, the sensor fabrication is simple including only cleaving, splicing, and etching. The signal is stable with high visibility. Therefore, it provides a valuable tool in biological and chemical applications.
文摘This special issue in the Journal of Electronic Science & Technology of China (JESTC) contains the selected papers presented at the 1st Asia-Pacific Optical Fiber Sensors Conference (APOS2008) organized by University of Electronic Science and Technology of China and Chongqing University, China. This conference is supported by Ministry of Education of the People's Republic of China, National Nature Science Foundation of China (NSFC), and Chinese Optics Society (COS).
基金supported by the National Natural Science Foundation of China under Grant No. 60537040.
文摘A fiber-optical intrusion alarm system based on quasi-distributed fiber Bragg grating (FBG) sensors is demonstrated in this paper. The algorithms of empirical mode decomposition (EMD) and wavelet packet characteristic entropy are adopted to determine the intrusion location. The intrusion alarm software based on the Labview is developed, and it is also proved by the experiments. The results show that such a fiber-optical intrusion alarm system can offer the automatic intrusion alarm in real-time.
基金This work is supported by the National Natural Science Foundation of China(Grant Nos.62275043,61875034,62205007,11825402,and 62105006)the 111 Project(B14039)+4 种基金the Sichuan Science and Technology Program(2021YJ0101)the Fundamental Research Funds for the Central Universities(ZYGX2021YGCX007)the China Postdoctoral Science Foundation(Grant Nos.2021T1400232020M680187,and 2021M700208)the Young Elite Scientists Sponsorship Program by CAST(2022QNRC001)。
文摘Biomarker detection is key to identifying health risks.However,designing sensitive and single-use biosensors for early diagnosis remains a major challenge.Here,we report submonolayer lasers on optical fibers as ultrasensitive and disposable biosensors.Telecom optical fibers serve as distributed optical microcavities with high Q-factor,great repeatability,and ultralow cost,which enables whispering-gallery laser emission to detect biomarkers.It is found that the sensing performance strongly depends on the number of gain molecules.The submonolayer lasers obtained a six-order-of-magnitude improvement in the lower limit of detection(LOD)when compared to saturated monolayer lasers.We further achieve an ultrasensitive immunoassay for a Parkinson's disease biomarker,alpha-synuclein(α-syn),with a lower LOD of 0.32 pM in serum,which is three orders of magnitude lower than theα-syn concentration in the serum of Parkinson's disease patients.Our demonstration of submonolayer biolaser offers great potentials in high-throughput clinical diagnosis with ultimate sensitivity.
文摘Dear colleagues and friends,I am delighted to announce the opening of our Special Issue in Photonic Sensors,"OFS advances over the past 10 years".As you know,our journal enters its 10th successful year of publication in 2021.I appreciate your support as readers,authors or reviewers for the Photonic Sensors journal.