期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
A modified stochastic model for LS+AR hybrid method and its application in polar motion short-term prediction
1
作者 Fei Ye yunbin yuan 《Geodesy and Geodynamics》 EI CSCD 2024年第1期100-105,共6页
Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currentl... Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currently,least squares(LS)+auto-regressive(AR)hybrid method is one of the main techniques of PM prediction.Besides,the weighted LS+AR hybrid method performs well for PM short-term prediction.However,the corresponding covariance information of LS fitting residuals deserves further exploration in the AR model.In this study,we have derived a modified stochastic model for the LS+AR hybrid method,namely the weighted LS+weighted AR hybrid method.By using the PM data products of IERS EOP 14 C04,the numerical results indicate that for PM short-term forecasting,the proposed weighted LS+weighted AR hybrid method shows an advantage over both the LS+AR hybrid method and the weighted LS+AR hybrid method.Compared to the mean absolute errors(MAEs)of PMX/PMY sho rt-term prediction of the LS+AR hybrid method and the weighted LS+AR hybrid method,the weighted LS+weighted AR hybrid method shows average improvements of 6.61%/12.08%and 0.24%/11.65%,respectively.Besides,for the slopes of the linear regression lines fitted to the errors of each method,the growth of the prediction error of the proposed method is slower than that of the other two methods. 展开更多
关键词 Stochastic model LS+AR Short-term prediction The earth rotation parameter(ERP) Observation model
原文传递
Status of UnDifferenced and Uncombined GNSS Data Processing Activities in China
2
作者 Pengyu HOU Delu CHE +3 位作者 Teng LIU Jiuping ZHA yunbin yuan Baocheng ZHANG 《Journal of Geodesy and Geoinformation Science》 CSCD 2023年第3期135-144,共10页
With the continued development of multiple Global Navigation Satellite Systems(GNSS)and the emergence of various frequencies,UnDifferenced and UnCombined(UDUC)data processing has become an increasingly attractive opti... With the continued development of multiple Global Navigation Satellite Systems(GNSS)and the emergence of various frequencies,UnDifferenced and UnCombined(UDUC)data processing has become an increasingly attractive option.In this contribution,we provide an overview of the current status of UDUC GNSS data processing activities in China.These activities encompass the formulation of Precise Point Positioning(PPP)models and PPP-Real-Time Kinematic(PPP-RTK)models for processing single-station and multi-station GNSS data,respectively.Regarding single-station data processing,we discuss the advancements in PPP models,particularly the extension from a single system to multiple systems,and from dual frequencies to single and multiple frequencies.Additionally,we introduce the modified PPP model,which accounts for the time variation of receiver code biases,a departure from the conventional PPP model that typically assumes these biases to be time-constant.In the realm of multi-station PPP-RTK data processing,we introduce the ionosphere-weighted PPP-RTK model,which enhances the model strength by considering the spatial correlation of ionospheric delays.We also review the phase-only PPP-RTK model,designed to mitigate the impact of unmodelled code-related errors.Furthermore,we explore GLONASS PPP-RTK,achieved through the application of the integer-estimable model.For large-scale network data processing,we introduce the all-in-view PPP-RTK model,which alleviates the strict common-view requirement at all receivers.Moreover,we present the decentralized PPP-RTK data processing strategy,designed to improve computational efficiency.Overall,this work highlights the various advancements in UDUC GNSS data processing,providing insights into the state-of-the-art techniques employed in China to achieve precise GNSS applications. 展开更多
关键词 Global Navigation Satellite Systems(GNSS) UnDifferenced and UnCombined(UDUC) Precise Point Positioning(PPP) PPP-Real-Time Kinematic(PPP-RTK) single-station data processing multi-station data processing
下载PDF
Initial orbit determination of BDS-3 satellites based on new code signals 被引量:2
3
作者 Fei Ye yunbin yuan Jikun Ou 《Geodesy and Geodynamics》 2018年第4期342-346,共5页
For the two newly launched satellites(PRN number 27 and 28) of the future global BeiDou navigation satellite system(BDS-3), there is no available broadcast ephemeris data and other initial orbit information, but the i... For the two newly launched satellites(PRN number 27 and 28) of the future global BeiDou navigation satellite system(BDS-3), there is no available broadcast ephemeris data and other initial orbit information, but the initial orbit is the fundamental of the comprehensive analysis of the satellites and their signals. Precise orbit determination(POD) also requires determination of a priori initial value with a certain precision in order to avoid problems such as filter divergence during POD. Compared with the Newton iteration method, which relies on the initial value, this study utilizes the Bancroft algorithm to directly solve the nonlinear equations with the advantage of numerical stability. The initial orbits of these two satellites are calculated based on new code signals, and their results are analyzed and discussed. The experimental results show that, with the exception of very few epochs, when the new code signal is utilized, the median and robust variance factor of the observed residuals computed using pseudo-range observations and the solved initial orbits are less than 4 and 2 m, respectively. It also shows that this solution can be used for rapid initial orbit recovery after maneuvers of the new BeiDou satellites. 展开更多
关键词 NEW-GENERATION BEIDOU SATELLITES NEW CODE SIGNALS Initial orbit determination Bancroft
原文传递
Initial assessment of single-and dual-frequency BDS-3 RTK positioning 被引量:7
4
作者 yunbin yuan Xiaolong Mi Baocheng Zhang 《Satellite Navigation》 2020年第1期338-344,共7页
The BeiDou navigation satellite system with global coverage(BDS-3)has been fully operational since July 2020 and provides comprehensive services to global users.BDS-3 transmits several new navigational signals based o... The BeiDou navigation satellite system with global coverage(BDS-3)has been fully operational since July 2020 and provides comprehensive services to global users.BDS-3 transmits several new navigational signals based on the signals inherited from the BeiDou navigation satellite(regional)system(BDS-2).Previous studies focused on the positioning performance of BDS-2 plus BDS-3 and that of combining BDS-3 and other Global Navigation Satellite Systems(GNSSs),but there was no in-depth discussion on the positioning performance of the BDS-3-only.In this contribution,the BDS-3-only Real-Time Kinematic(RTK)positioning is analysed using the data collected in zero and short baselines in Wuhan,China.The RTK model based on Single-Differenced is first presented,and the BDS-3-only RTK positioning in cases of single and dual-frequencies is evaluated with the model in terms of the empirical integer ambiguity resolution success rates and positioning accuracy.Our numerical tests suggest two major findings.First,the positioning performance for the B1I and B3I retained from BDS-2 and the new frequency B1C is comparable,while that for the new frequency B2a is poorer.Second,the positioning performance of the new frequency combination of the B1C+B2a is not as good as that of the B1C only,owing to the unrealistic stochastic model used. 展开更多
关键词 BDS-3 Global navigation satellite system Real-time kinematic Integer ambiguity resolution Stochastic model
原文传递
Status of CAS global ionospheric maps after the maximum of solar cycle 24 被引量:2
5
作者 Zishen Li Ningbo Wang +5 位作者 Ang Liu yunbin yuan Liang Wang Manuel Hernández-Pajares Andrzej Krankowski Hong yuan 《Satellite Navigation》 2021年第1期263-277,共15页
As a new Ionosphere Associate Analysis Center(IAAC)of the International GNSS Service(IGS),Chinese Academy of Sciences(CAS)started the routine computation of the real-time,rapid,and final Global Ionospheric Maps(GIMs)i... As a new Ionosphere Associate Analysis Center(IAAC)of the International GNSS Service(IGS),Chinese Academy of Sciences(CAS)started the routine computation of the real-time,rapid,and final Global Ionospheric Maps(GIMs)in 2015.The method for the generation of CAS rapid and final GIMs and recent updates are presented in the paper.The quality of CAS post-processed GIMs is assessed during 2015-2018 after the maximum of solar cycle 24.To perform an independent and fair assessment,Jason-2/3 Vertical Total Electron Contents(VTEC)are first used as the references over the ocean.GPS differential Slant TECs(dSTEC)generated from 55 Multi-GNSS Experimental(MGEX)stations of the IGS are also employed,which provides a complementing way to evaluate the ability of electron content models to reproduce the spatial and temporal gradients in the ionosphere.During the test period,Jet Propulsion Laboratory(JPL)GIMs present significantly positive deviations compared to the Jason VTEC and GPS dSTEC.Technical University of Catalonia(UPC)rapid GIM UQRG exhibits the best performance in both Jason VTEC and GPS dSTEC analysis.The CAS GIMs show comparable performance with the results of the first four IAACs of the IGS.As expected,the poor performance of all GIMs is in equatorial regions and the high latitudes of the southern hemisphere.The consideration of generating multi-layer or three-dimensional ionospheric maps is emphasized to mitigate the inadequacy of ionospheric single-layer assumption in the presence of pronounced latitudinal gradients.The use of ionospheric observations from the new GNSS constellations and other space-or ground-based observation techniques is also suggested in the generation of future GIMs,given the sparse GPS/GLONASS stations in the southern hemisphere. 展开更多
关键词 International GNSS Service(IGS) Global ionospheric map(GIM) Total electron content(TEC) Jason-2/3 Differential Slant TEC(dSTEC)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部