Electric power training is essential for ensuring the safety and reliability of the system.In this study,we introduce a novel Abnormal Action Recognition(AAR)system that utilizes a Lightweight Pose Estimation Network(...Electric power training is essential for ensuring the safety and reliability of the system.In this study,we introduce a novel Abnormal Action Recognition(AAR)system that utilizes a Lightweight Pose Estimation Network(LPEN)to efficiently and effectively detect abnormal fall-down and trespass incidents in electric power training scenarios.The LPEN network,comprising three stages—MobileNet,Initial Stage,and Refinement Stage—is employed to swiftly extract image features,detect human key points,and refine them for accurate analysis.Subsequently,a Pose-aware Action Analysis Module(PAAM)captures the positional coordinates of human skeletal points in each frame.Finally,an Abnormal Action Inference Module(AAIM)evaluates whether abnormal fall-down or unauthorized trespass behavior is occurring.For fall-down recognition,three criteria—falling speed,main angles of skeletal points,and the person’s bounding box—are considered.To identify unauthorized trespass,emphasis is placed on the position of the ankles.Extensive experiments validate the effectiveness and efficiency of the proposed system in ensuring the safety and reliability of electric power training.展开更多
By extending the classical analysis techniques due to Samokish, Faddeev and Faddee- va, and Longsine and McCormick among others, we prove the convergence of the precon- ditioned steepest descent with implicit deflati...By extending the classical analysis techniques due to Samokish, Faddeev and Faddee- va, and Longsine and McCormick among others, we prove the convergence of the precon- ditioned steepest descent with implicit deflation (PSD-id) method for solving Hermitian- definite generalized eigenvalue problems. Furthermore, we derive a nonasymptotie estimate of the rate of convergence of the PSD-id method. We show that with a proper choice of the shift, the indefinite shift-and-invert preconditioner is a locally accelerated preconditioner, and is asymptotically optimal which leads to superlinear convergence Numerical examples are presented to verify the theoretical results on the convergence behavior of the PSD- id method for solving ill-conditioned Hermitian-definite generalized eigenvalue problems arising from electronic structure calculations. While rigorous and full-scale convergence proofs of preconditioned block steepest descent methods in practical use still largely eludes us, we believe the theoretical results presented in this paper shed light on an improved understanding of the convergence behavior of these block methods.展开更多
基金supportted by Natural Science Foundation of Jiangsu Province(No.BK20230696).
文摘Electric power training is essential for ensuring the safety and reliability of the system.In this study,we introduce a novel Abnormal Action Recognition(AAR)system that utilizes a Lightweight Pose Estimation Network(LPEN)to efficiently and effectively detect abnormal fall-down and trespass incidents in electric power training scenarios.The LPEN network,comprising three stages—MobileNet,Initial Stage,and Refinement Stage—is employed to swiftly extract image features,detect human key points,and refine them for accurate analysis.Subsequently,a Pose-aware Action Analysis Module(PAAM)captures the positional coordinates of human skeletal points in each frame.Finally,an Abnormal Action Inference Module(AAIM)evaluates whether abnormal fall-down or unauthorized trespass behavior is occurring.For fall-down recognition,three criteria—falling speed,main angles of skeletal points,and the person’s bounding box—are considered.To identify unauthorized trespass,emphasis is placed on the position of the ankles.Extensive experiments validate the effectiveness and efficiency of the proposed system in ensuring the safety and reliability of electric power training.
文摘By extending the classical analysis techniques due to Samokish, Faddeev and Faddee- va, and Longsine and McCormick among others, we prove the convergence of the precon- ditioned steepest descent with implicit deflation (PSD-id) method for solving Hermitian- definite generalized eigenvalue problems. Furthermore, we derive a nonasymptotie estimate of the rate of convergence of the PSD-id method. We show that with a proper choice of the shift, the indefinite shift-and-invert preconditioner is a locally accelerated preconditioner, and is asymptotically optimal which leads to superlinear convergence Numerical examples are presented to verify the theoretical results on the convergence behavior of the PSD- id method for solving ill-conditioned Hermitian-definite generalized eigenvalue problems arising from electronic structure calculations. While rigorous and full-scale convergence proofs of preconditioned block steepest descent methods in practical use still largely eludes us, we believe the theoretical results presented in this paper shed light on an improved understanding of the convergence behavior of these block methods.