Recently, the high-tech industry has become a key industry for economic development in many countries. However, vibration sensitive equipment located in these industrial buildings is vulnerable during earthquakes, whi...Recently, the high-tech industry has become a key industry for economic development in many countries. However, vibration sensitive equipment located in these industrial buildings is vulnerable during earthquakes, which may cause huge economic loss. In this study, an innovative isolator for safeguarding the vibration sensitive equipment, namely, the static dynamics interchangeable^all pendulum system (SDI-BPS) is proposed and investigated to examine its protective capability for the vibration sensitive equipment during earthquakes through a series of tri-directional shaking table tests. The experimental results illustrate that the SDI-BPS isolator can provide significant damping to rolling types of base isolation systems for reducing the bearing displacement and size, and avoid the stress concentration, which can cause damage or scratches on the rolling surface of the isolator, to prolong its life span of service. The SDI-BPS isolator also provides excellent capability in protecting the vibration sensitive equipment and exhibits a stable behavior under long terms of service loadings and earthquakes.展开更多
This study employed microwave-assisted hydrothermal method to synthesize Ti-MCM-41,which are mesoporous materials with a high surface area and excellent photocatalytic ability. Fourier transform infrared spectroscopy...This study employed microwave-assisted hydrothermal method to synthesize Ti-MCM-41,which are mesoporous materials with a high surface area and excellent photocatalytic ability. Fourier transform infrared spectroscopy(FTIR), X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS), transmission electron microscopy(TEM), and ultraviolet–visible spectroscopy(UV–Vis) were employed. The XRD findings showed that Ti-MCM-41 exhibited a peak at 2θ of 2.2°, which was attributed to the hexagonal MCM-41 structure. The BET(Brunauer–Emmett–Teller) results agreed with the TEM findings that Ti-MCM-41 has a pore size of about 3–5 nm and a high surface area of 883 m-2/g. FTIR results illustrated the existence of Si–O–Si and Si–O–Ti bonds in Ti-MCM-41. The appearance of Ti2 p peaks in the XPS results confirmed the FTIR findings that the Ti was successfully doped into the MCM-41 structure. Zeta(ζ)-potential results indicated that the iso-electric point(IEP) of Ti-MCM-41 was at about pH 3.02. In this study, the photocatalytic degradation of oxytetracycline(OTC) at different pH was investigated under Hg lamp irradiation(wavelength 365 nm). The rate constant(K′obs) for OTC degradation was 0.012 min-1at pH 3. Furthermore, TOC(total organic carbon) and high resolution LC–MS(liquid chromatography–mass spectrometry) analyses were conducted to elucidate the possible intermediate products and degradation pathway for OTC. The TOC removal efficiency of OTC degradation was 87.0%, 74.4% and 50.9% at pH 3, 7 and 10, respectively. LC–MS analysis results showed that the degradation products from OTC resulted from the removal of functional groups from the OTC ring.展开更多
Van der Waals coupling with different stacking configurations can significantly affect the optical and electronic properties of ultrathin two-dimensional(2D)materials,which is an effective way to tune device performan...Van der Waals coupling with different stacking configurations can significantly affect the optical and electronic properties of ultrathin two-dimensional(2D)materials,which is an effective way to tune device performance.Herein,we report a salt-assisted chemical vapor deposition method for the synthesis of bilayer V-doped MoS_(2) with 2H and 3R phases,which are demonstrated by the second harmonic generation and scanning transmission electron microscopy.Notably,the mobility of the 3R phase V-doped MoS_(2) is 6.2%higher than that of the 2H phase.Through first-principles calculations,we further reveal that this particular behavior is attributed to the stronger interlayer coupling of 3R compared to the 2H stacking configuration.This research can be further generalized to other transition metal chalcogenides and will contribute to the development of electronic devices based on 2D materials in the future.展开更多
It is essential and challenging to minimize soft tissue infiltration in a spinal fusion surgery.Recently,chitosanbased materials have been brought attention to the field of orthopedic tissue engineering.This study pre...It is essential and challenging to minimize soft tissue infiltration in a spinal fusion surgery.Recently,chitosanbased materials have been brought attention to the field of orthopedic tissue engineering.This study presents the results of using MIRDCchitosan-enveloped titanium cage for lumbar spinal fusion surgery with better minimization of tissue infiltration.展开更多
基金the Science Council in Taiwan for the financial support(Project No.NSC 95- 2221-E-035-1120)
文摘Recently, the high-tech industry has become a key industry for economic development in many countries. However, vibration sensitive equipment located in these industrial buildings is vulnerable during earthquakes, which may cause huge economic loss. In this study, an innovative isolator for safeguarding the vibration sensitive equipment, namely, the static dynamics interchangeable^all pendulum system (SDI-BPS) is proposed and investigated to examine its protective capability for the vibration sensitive equipment during earthquakes through a series of tri-directional shaking table tests. The experimental results illustrate that the SDI-BPS isolator can provide significant damping to rolling types of base isolation systems for reducing the bearing displacement and size, and avoid the stress concentration, which can cause damage or scratches on the rolling surface of the isolator, to prolong its life span of service. The SDI-BPS isolator also provides excellent capability in protecting the vibration sensitive equipment and exhibits a stable behavior under long terms of service loadings and earthquakes.
基金financial support provided by the Tunghai University Global Research and Education on Environment and Society (No. 103GREEnS 005-2)
文摘This study employed microwave-assisted hydrothermal method to synthesize Ti-MCM-41,which are mesoporous materials with a high surface area and excellent photocatalytic ability. Fourier transform infrared spectroscopy(FTIR), X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS), transmission electron microscopy(TEM), and ultraviolet–visible spectroscopy(UV–Vis) were employed. The XRD findings showed that Ti-MCM-41 exhibited a peak at 2θ of 2.2°, which was attributed to the hexagonal MCM-41 structure. The BET(Brunauer–Emmett–Teller) results agreed with the TEM findings that Ti-MCM-41 has a pore size of about 3–5 nm and a high surface area of 883 m-2/g. FTIR results illustrated the existence of Si–O–Si and Si–O–Ti bonds in Ti-MCM-41. The appearance of Ti2 p peaks in the XPS results confirmed the FTIR findings that the Ti was successfully doped into the MCM-41 structure. Zeta(ζ)-potential results indicated that the iso-electric point(IEP) of Ti-MCM-41 was at about pH 3.02. In this study, the photocatalytic degradation of oxytetracycline(OTC) at different pH was investigated under Hg lamp irradiation(wavelength 365 nm). The rate constant(K′obs) for OTC degradation was 0.012 min-1at pH 3. Furthermore, TOC(total organic carbon) and high resolution LC–MS(liquid chromatography–mass spectrometry) analyses were conducted to elucidate the possible intermediate products and degradation pathway for OTC. The TOC removal efficiency of OTC degradation was 87.0%, 74.4% and 50.9% at pH 3, 7 and 10, respectively. LC–MS analysis results showed that the degradation products from OTC resulted from the removal of functional groups from the OTC ring.
基金financially supported by the National Natural Science Foundation of China (Nos.62174013 and92265111)the Funding Program of Beijing Institute of Technology (Nos.3180012212214 and 3180023012204)。
文摘Van der Waals coupling with different stacking configurations can significantly affect the optical and electronic properties of ultrathin two-dimensional(2D)materials,which is an effective way to tune device performance.Herein,we report a salt-assisted chemical vapor deposition method for the synthesis of bilayer V-doped MoS_(2) with 2H and 3R phases,which are demonstrated by the second harmonic generation and scanning transmission electron microscopy.Notably,the mobility of the 3R phase V-doped MoS_(2) is 6.2%higher than that of the 2H phase.Through first-principles calculations,we further reveal that this particular behavior is attributed to the stronger interlayer coupling of 3R compared to the 2H stacking configuration.This research can be further generalized to other transition metal chalcogenides and will contribute to the development of electronic devices based on 2D materials in the future.
文摘It is essential and challenging to minimize soft tissue infiltration in a spinal fusion surgery.Recently,chitosanbased materials have been brought attention to the field of orthopedic tissue engineering.This study presents the results of using MIRDCchitosan-enveloped titanium cage for lumbar spinal fusion surgery with better minimization of tissue infiltration.