Microgrids are being developed as a building block for future smart grid system.Key issues for the control and operation of microgrid include integration technologies and energy management schemes.This paper presents ...Microgrids are being developed as a building block for future smart grid system.Key issues for the control and operation of microgrid include integration technologies and energy management schemes.This paper presents an overview of grid integration and energy management strategies of microgrids.It covers a review of power electronics interface topologies for different types of distributed generation(DG)units in a microgrid,a discussion of energy management strategies,as well as the DG interfacing converter control schemes.Considering the intermittent nature of many renewable energy based DG units,the ancillary services of DGs using the available interfacing converter rating are also discussed in the paper.展开更多
With the increase of dc based renewable energy generation and dc loads,the medium voltage dc(MVDC)distribution network is becoming a promising option for more efficient system integration.In particular,large-capacity ...With the increase of dc based renewable energy generation and dc loads,the medium voltage dc(MVDC)distribution network is becoming a promising option for more efficient system integration.In particular,large-capacity photovoltaic(PV)-based power generation is growing rapidly,and a corresponding power conversion system is critical to integrate these large PV systems into MVDC power grid.Different from traditional ac grid-connected converters,the converter system for dc grid interfaced PV system requires large-capacity dc conversion over a wide range of ultra-high voltage step-up ratios.This is an important issue,yet received limited research so far.In this paper,a thorough study of dc-dc conversion system for a medium-voltage dc grid-connected PV system is conducted.The required structural features for such a conversion system are first discussed.Based on these features,the conversion system is classified into four categories by series-parallel connection scheme of power modules.Then two existing conversion system configurations as well as a proposed solution are compared in terms of input/output performance,conversion efficiency,modulation method,control complexity,power density,reliability,and hardware cost.In-depth analysis is carried out to select the most suitable conversion systems in various application scenarios.展开更多
Multilevel voltage source converters(MLVSCs)have been widely applied in the medium voltage drive(MVD)industry.The performance of a MVD system is strongly dependent on the utilized topology.As of today,many interesting...Multilevel voltage source converters(MLVSCs)have been widely applied in the medium voltage drive(MVD)industry.The performance of a MVD system is strongly dependent on the utilized topology.As of today,many interesting topologies have been proposed and evaluated in literature.In addition to proposing new topologies,another important research topic is the MLVSC topology derivation.In this paper,two topology derivation principles,i.e.horizontal conformation principle and vertical conformation principle,are proposed from the standpoint of modularity.In both principles,a MLVSC topology can be considered as a certain combination of one base switching cell and several module switching cells.With the proposed principle,the derived topology will naturally have modularity,which is favorable in practical applications.In addition,voltage level extension based on cascaded H-bridge building blocks(HBBBs)is also introduced.The challenging issues faced by the emerging topologies for MVD applications are also discussed.It is hoped that this paper can provide a new perspective on the MLVSC topology derivation and inspire new topologies in the future.展开更多
文摘Microgrids are being developed as a building block for future smart grid system.Key issues for the control and operation of microgrid include integration technologies and energy management schemes.This paper presents an overview of grid integration and energy management strategies of microgrids.It covers a review of power electronics interface topologies for different types of distributed generation(DG)units in a microgrid,a discussion of energy management strategies,as well as the DG interfacing converter control schemes.Considering the intermittent nature of many renewable energy based DG units,the ancillary services of DGs using the available interfacing converter rating are also discussed in the paper.
基金Supported by the National Natural Science Foundation of China(51811540405,52007096)National Key R&D Program of China(2016YFB0900205).
文摘With the increase of dc based renewable energy generation and dc loads,the medium voltage dc(MVDC)distribution network is becoming a promising option for more efficient system integration.In particular,large-capacity photovoltaic(PV)-based power generation is growing rapidly,and a corresponding power conversion system is critical to integrate these large PV systems into MVDC power grid.Different from traditional ac grid-connected converters,the converter system for dc grid interfaced PV system requires large-capacity dc conversion over a wide range of ultra-high voltage step-up ratios.This is an important issue,yet received limited research so far.In this paper,a thorough study of dc-dc conversion system for a medium-voltage dc grid-connected PV system is conducted.The required structural features for such a conversion system are first discussed.Based on these features,the conversion system is classified into four categories by series-parallel connection scheme of power modules.Then two existing conversion system configurations as well as a proposed solution are compared in terms of input/output performance,conversion efficiency,modulation method,control complexity,power density,reliability,and hardware cost.In-depth analysis is carried out to select the most suitable conversion systems in various application scenarios.
文摘Multilevel voltage source converters(MLVSCs)have been widely applied in the medium voltage drive(MVD)industry.The performance of a MVD system is strongly dependent on the utilized topology.As of today,many interesting topologies have been proposed and evaluated in literature.In addition to proposing new topologies,another important research topic is the MLVSC topology derivation.In this paper,two topology derivation principles,i.e.horizontal conformation principle and vertical conformation principle,are proposed from the standpoint of modularity.In both principles,a MLVSC topology can be considered as a certain combination of one base switching cell and several module switching cells.With the proposed principle,the derived topology will naturally have modularity,which is favorable in practical applications.In addition,voltage level extension based on cascaded H-bridge building blocks(HBBBs)is also introduced.The challenging issues faced by the emerging topologies for MVD applications are also discussed.It is hoped that this paper can provide a new perspective on the MLVSC topology derivation and inspire new topologies in the future.