期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
COVID-19: Challenges to GIS with Big Data 被引量:30
1
作者 Chenghu Zhou Fenzhen Su +18 位作者 Tao Pei An Zhang yunyan du Bin Luo Zhidong Cao Juanle Wang Wen Yuan Yunqiang Zhu Ci Song Jie Chen Jun Xu Fujia Li Ting Ma Lili Jiang Fengqin Yan Jiawei Yi Yunfeng Hu Yilan Liao Han Xiao 《Geography and Sustainability》 2020年第1期77-87,共11页
The outbreak of the 2019 novel coronavirus disease(COVID-19)has caused more than 100,000 people infected and thousands of deaths.Currently,the number of infections and deaths is still increasing rapidly.COVID-19 serio... The outbreak of the 2019 novel coronavirus disease(COVID-19)has caused more than 100,000 people infected and thousands of deaths.Currently,the number of infections and deaths is still increasing rapidly.COVID-19 seriously threatens human health,production,life,social functioning and international relations.In the fight against COVID-19,Geographic Information Systems(GIS)and big data technologies have played an important role in many aspects,including the rapid aggregation of multi-source big data,rapid visualization of epidemic information,spatial tracking of confirmed cases,prediction of regional transmission,spatial segmentation of the epidemic risk and prevention level,balancing and management of the supply and demand of material resources,and socialemotional guidance and panic elimination,which provided solid spatial information support for decision-making,measures formulation,and effectiveness assessment of COVID-19 prevention and control.GIS has developed and matured relatively quickly and has a complete technological route for data preparation,platform construction,model construction,and map production.However,for the struggle against the widespread epidemic,the main challenge is finding strategies to adjust traditional technical methods and improve speed and accuracy of information provision for social management.At the data level,in the era of big data,data no longer come mainly from the government but are gathered from more diverse enterprises.As a result,the use of GIS faces difficulties in data acquisition and the integration of heterogeneous data,which requires governments,businesses,and academic institutions to jointly promote the formulation of relevant policies.At the technical level,spatial analysis methods for big data are in the ascendancy.Currently and for a long time in the future,the development of GIS should be strengthened to form a data-driven system for rapid knowledge acquisition,which signifies ts that GIS should be used to reinforce the social operation parameterization of models and methods,especially when providing support for social management. 展开更多
关键词 COVID-19 Big data GIS Spatial transmission Social management
下载PDF
青海湖自然保护区人类数字足迹及草地生物量的人类活动暴露度的时空模式分析 被引量:1
2
作者 涂文娜 易嘉伟 +4 位作者 杜云艳 王楠 千家乐 黄胜 王晓悦 《生物多样性》 CAS CSCD 北大核心 2022年第6期171-181,共11页
开展保护区人类活动压力定量评估对保护区内生态系统安全、降低人类活动影响具有重要意义。许多学者从人类活动对生物多样性、生物的生境或生态系统服务及其价值的影响等角度已开展了大量研究,但由于反映人类活动的统计数据在时空尺度... 开展保护区人类活动压力定量评估对保护区内生态系统安全、降低人类活动影响具有重要意义。许多学者从人类活动对生物多样性、生物的生境或生态系统服务及其价值的影响等角度已开展了大量研究,但由于反映人类活动的统计数据在时空尺度上较粗,难以精细刻画保护区内短期动态的人类活动干扰。本研究尝试通过记录人的位置到访信息的高时空分辨率数字足迹数据,以青海湖国家级自然保护区为研究区域,利用0.01°逐日的定位请求数据和草地生物量数据,从人类数字足迹覆盖率、数字足迹强度和草地生物量的人类活动暴露度3个指标上对青海湖自然保护区内人类数字足迹入侵强度及其对生态环境的影响开展了研究。研究结果显示,青海湖保护区人类数字足迹具有“多尖峰、南高北低、景区节律”的时空模式;每日人类数字足迹覆盖率和足迹强度呈现按月聚集模式,最大值分别为7.42%和5.24;草地生物量的人类活动暴露度显示人类数字足迹对青海湖二郎剑-黑马河沿线的草地生物量影响最大,此时草地生物量的人类活动暴露度水平在热门旅游景点较高,最高达到2.24。通过位置大数据挖掘青海湖保护区内人类数字足迹的时空变化及其对于生态环境的影响,不仅证明了数字足迹用于人类活动对于生态环境影响研究的有效性,也为保护区生态环境精细化的管理提供支撑。 展开更多
关键词 数字足迹 大数据 暴露度 青海湖 保护区
原文传递
Quantitative estimates of collective geo-tagged human activities in response to typhoon Hato using location-aware big data 被引量:1
3
作者 Zhang Liu yunyan du +3 位作者 Jiawei Yi Fuyuan Liang Ting Ma Tao Pei 《International Journal of Digital Earth》 SCIE 2020年第9期1072-1092,共21页
Location-aware big data from social media have been widely used to quantitatively characterize natural disasters and disaster-induced losses.It is not clear how human activities collectively respond to a disaster.In t... Location-aware big data from social media have been widely used to quantitatively characterize natural disasters and disaster-induced losses.It is not clear how human activities collectively respond to a disaster.In this study,we examined the collective human activities in response to Typhoon Hato at multi spatial scales using aggregated location request data.We proposed a Multilevel Abrupt Changes Detection(MACD)methodological framework to detect and characterize the abrupt changes in location requests in response to Typhoon Hato.Results show that,at the grid level,most anomaly grids were located within a radius of 53 km around the typhoon trajectory.At the city level,there are significant spatial difference in terms of the human activity recovery duration(230 h on average).At the subnational level,the absolute magnitude of abrupt location request changes is strongly correlated with the typhoon-induced economic losses and the population affected. 展开更多
关键词 Human response TYPHOON natural disaster locationaware data rapid disaster assessment
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部