The sulfide solid electrolytes have the characteristics of high ionic conductivity and low grain boundary resistance, which make them suitable for bulk-type all-solid-state batteries. However, most of them suffer from...The sulfide solid electrolytes have the characteristics of high ionic conductivity and low grain boundary resistance, which make them suitable for bulk-type all-solid-state batteries. However, most of them suffer from poor stability in air. Here, we explore the air stable sulfide solid electrolytes in Li4-xSbxSn1-xS4 system. The solid solutions of Li4-xSbxSn1-xS4(0 ≤ x ≤ 0.5) can be formed in Li4-xSbxSn1-xS4 system. Li3.8 Sb0.2 Sn0.8 S4 achieves the highest ionic conductivity of 3.5 × 10-4 S cm-1 in this system,which is 5 times as that of Li4 Sn S4 and 3 orders of magnitude higher than that of Li3 Sb S4, respectively. Li3.8 Sb0.2 Sn0.8 S4 crystallizes into the same structure with high ionic conductivity phase of β-Li3 PS4. Moreover, Li3.8 Sb0.2 Sn0.8 S4 owns good stability in humid air. Matching with LiCoO2 and Li4 Ti5 O12,Li3.8 Sb0.2 Sn0.8 S4 exhibits the potential to be applied in all-solid-state batteries.展开更多
Bone tissue engineering provides a promising strategy for the treatment of bone defects.Nonetheless,the clinical utilization of biomaterial-based scaffolds is constrained by their inadequate mechanical strength and ab...Bone tissue engineering provides a promising strategy for the treatment of bone defects.Nonetheless,the clinical utilization of biomaterial-based scaffolds is constrained by their inadequate mechanical strength and absence of osteo-inductive properties.Here,we proposed to endow nano-scaffold(NS)constructed by coaxial electrospinning technique with enhanced osteogenic bioactivities and mechanical properties by incorporating biocompatible magnetic iron oxide nanoparticles(IONPs)and icaritin(ICA).Four types of nano-scaffolds(NS,ICA@NS,NS-IONPs and ICA@NS-IONPs)were prepared.The incorporation of ICA and IONPs minimally impact their surface morphological and chemical properties.IONPs enhanced the mechanical properties of NS scaffolds,including hardness,tensile strength,and elastic modulus.In vitro assessments demonstrated that ICA@NS-IONPs exhibited enhanced osteogenic bioactivities towards mouse calvarial pre-osteoblast cell line MC3T3-E1 as evidenced by detecting the alkaline phosphatase(ALP)activity level,expressions of osteogenesis-related genes and proteins as well as mineralized nodule formation.Mechanistic investigations revealed that MEK/ERK(MAP kinase-ERK kinase(MEK)/extracellularsignal-regulated kinase(ERK))signaling pathway could offer a plausible explanation for the osteogenic differentiation of MC3T3-E1 cells induced by ICA@NS-IONPs.Furthermore,the implantation of nano-scaffolds in rat skull defects exhibited a substantial improvement in in vivo bone regeneration.Therefore,IONPs and ICA incorporated coaxial electrospinning nano-scaffolds present a novel strategy for the optimization of scaffolds for bone tissue engineering.展开更多
基金supported by the National Basic Research Program of China(973 Program,2015CB258400)the Program for HUST Interdisciplinary Innovation Team(2015ZDTD021)the China Postdoctoral Science Foundation Grant(2017M622422)。
文摘The sulfide solid electrolytes have the characteristics of high ionic conductivity and low grain boundary resistance, which make them suitable for bulk-type all-solid-state batteries. However, most of them suffer from poor stability in air. Here, we explore the air stable sulfide solid electrolytes in Li4-xSbxSn1-xS4 system. The solid solutions of Li4-xSbxSn1-xS4(0 ≤ x ≤ 0.5) can be formed in Li4-xSbxSn1-xS4 system. Li3.8 Sb0.2 Sn0.8 S4 achieves the highest ionic conductivity of 3.5 × 10-4 S cm-1 in this system,which is 5 times as that of Li4 Sn S4 and 3 orders of magnitude higher than that of Li3 Sb S4, respectively. Li3.8 Sb0.2 Sn0.8 S4 crystallizes into the same structure with high ionic conductivity phase of β-Li3 PS4. Moreover, Li3.8 Sb0.2 Sn0.8 S4 owns good stability in humid air. Matching with LiCoO2 and Li4 Ti5 O12,Li3.8 Sb0.2 Sn0.8 S4 exhibits the potential to be applied in all-solid-state batteries.
基金supported by the National Basic Research Program of China(Nos.2021YFA1201404,and 2019YFA0210103)the National Natural Science Foundation of China(Nos.32271413,and 82272492)+1 种基金Natural Science Foundation of Jiangsu Province(No.BK20232023)Science program of Jiangsu Province Administration for Market Regulation(No.KJ2024010).
文摘Bone tissue engineering provides a promising strategy for the treatment of bone defects.Nonetheless,the clinical utilization of biomaterial-based scaffolds is constrained by their inadequate mechanical strength and absence of osteo-inductive properties.Here,we proposed to endow nano-scaffold(NS)constructed by coaxial electrospinning technique with enhanced osteogenic bioactivities and mechanical properties by incorporating biocompatible magnetic iron oxide nanoparticles(IONPs)and icaritin(ICA).Four types of nano-scaffolds(NS,ICA@NS,NS-IONPs and ICA@NS-IONPs)were prepared.The incorporation of ICA and IONPs minimally impact their surface morphological and chemical properties.IONPs enhanced the mechanical properties of NS scaffolds,including hardness,tensile strength,and elastic modulus.In vitro assessments demonstrated that ICA@NS-IONPs exhibited enhanced osteogenic bioactivities towards mouse calvarial pre-osteoblast cell line MC3T3-E1 as evidenced by detecting the alkaline phosphatase(ALP)activity level,expressions of osteogenesis-related genes and proteins as well as mineralized nodule formation.Mechanistic investigations revealed that MEK/ERK(MAP kinase-ERK kinase(MEK)/extracellularsignal-regulated kinase(ERK))signaling pathway could offer a plausible explanation for the osteogenic differentiation of MC3T3-E1 cells induced by ICA@NS-IONPs.Furthermore,the implantation of nano-scaffolds in rat skull defects exhibited a substantial improvement in in vivo bone regeneration.Therefore,IONPs and ICA incorporated coaxial electrospinning nano-scaffolds present a novel strategy for the optimization of scaffolds for bone tissue engineering.