期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Li4-xSbxSn1-xS4 solid solutions for air-stable solid electrolytes 被引量:5
1
作者 Zhuoran zhang Jianxing zhang +4 位作者 Yulong Sun Huanhuan Jia Linfeng Peng yunyang zhang Jia Xie 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第2期171-176,共6页
The sulfide solid electrolytes have the characteristics of high ionic conductivity and low grain boundary resistance, which make them suitable for bulk-type all-solid-state batteries. However, most of them suffer from... The sulfide solid electrolytes have the characteristics of high ionic conductivity and low grain boundary resistance, which make them suitable for bulk-type all-solid-state batteries. However, most of them suffer from poor stability in air. Here, we explore the air stable sulfide solid electrolytes in Li4-xSbxSn1-xS4 system. The solid solutions of Li4-xSbxSn1-xS4(0 ≤ x ≤ 0.5) can be formed in Li4-xSbxSn1-xS4 system. Li3.8 Sb0.2 Sn0.8 S4 achieves the highest ionic conductivity of 3.5 × 10-4 S cm-1 in this system,which is 5 times as that of Li4 Sn S4 and 3 orders of magnitude higher than that of Li3 Sb S4, respectively. Li3.8 Sb0.2 Sn0.8 S4 crystallizes into the same structure with high ionic conductivity phase of β-Li3 PS4. Moreover, Li3.8 Sb0.2 Sn0.8 S4 owns good stability in humid air. Matching with LiCoO2 and Li4 Ti5 O12,Li3.8 Sb0.2 Sn0.8 S4 exhibits the potential to be applied in all-solid-state batteries. 展开更多
关键词 Solid ELECTROLYTE AIR STABLE SULFIDE Li4SnS4 β-Li3PS4 ALL-SOLID-STATE BATTERY
下载PDF
Enhancing osteogenic bioactivities of coaxial electrospinning nanoscaffolds through incorporating iron oxide nanoparticles and icaritin for bone regeneration
2
作者 Peng Wang Qianjin Wang +7 位作者 Dengxian Wu yunyang zhang Shixiong Kang Xucai Wang Jiayu Gu Hao Wu Zhihong Xu Qing Jiang 《Nano Research》 SCIE EI CSCD 2024年第7期6430-6442,共13页
Bone tissue engineering provides a promising strategy for the treatment of bone defects.Nonetheless,the clinical utilization of biomaterial-based scaffolds is constrained by their inadequate mechanical strength and ab... Bone tissue engineering provides a promising strategy for the treatment of bone defects.Nonetheless,the clinical utilization of biomaterial-based scaffolds is constrained by their inadequate mechanical strength and absence of osteo-inductive properties.Here,we proposed to endow nano-scaffold(NS)constructed by coaxial electrospinning technique with enhanced osteogenic bioactivities and mechanical properties by incorporating biocompatible magnetic iron oxide nanoparticles(IONPs)and icaritin(ICA).Four types of nano-scaffolds(NS,ICA@NS,NS-IONPs and ICA@NS-IONPs)were prepared.The incorporation of ICA and IONPs minimally impact their surface morphological and chemical properties.IONPs enhanced the mechanical properties of NS scaffolds,including hardness,tensile strength,and elastic modulus.In vitro assessments demonstrated that ICA@NS-IONPs exhibited enhanced osteogenic bioactivities towards mouse calvarial pre-osteoblast cell line MC3T3-E1 as evidenced by detecting the alkaline phosphatase(ALP)activity level,expressions of osteogenesis-related genes and proteins as well as mineralized nodule formation.Mechanistic investigations revealed that MEK/ERK(MAP kinase-ERK kinase(MEK)/extracellularsignal-regulated kinase(ERK))signaling pathway could offer a plausible explanation for the osteogenic differentiation of MC3T3-E1 cells induced by ICA@NS-IONPs.Furthermore,the implantation of nano-scaffolds in rat skull defects exhibited a substantial improvement in in vivo bone regeneration.Therefore,IONPs and ICA incorporated coaxial electrospinning nano-scaffolds present a novel strategy for the optimization of scaffolds for bone tissue engineering. 展开更多
关键词 iron oxide nanoparticles ICARITIN coaxial electrospinning nano-scaffolds MEK/ERK signaling pathway bone regeneration
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部