An attempt to simplify the approach to the problems of room-temperature superconductors was done. The key factor has been highlighted—a giant spin-orbit interaction as a result of specific geometry of crystal. Consid...An attempt to simplify the approach to the problems of room-temperature superconductors was done. The key factor has been highlighted—a giant spin-orbit interaction as a result of specific geometry of crystal. Considering oriented carbyne as an example, it was shown that maximal value of SOC was attained in low-dimensional systems. A qualitative model of superconductivity in the localized phase with “pseudo-magnetic field” and “Rashba effective field” as parameters was presented. Their correlation was shown via geometry of electric microfields of crystal. Oriented carbyne was presented as localized phase of room-temperature superconductor and the recipe of its transformation to macroscopic superconductivity was given.展开更多
The qualitative explanation of the earlier published experimental data was obtained within new energetic model of oriented carbyne. The conductivity spectrum and the superinjection effect feature Landau quantization i...The qualitative explanation of the earlier published experimental data was obtained within new energetic model of oriented carbyne. The conductivity spectrum and the superinjection effect feature Landau quantization in a giant pseudomagnetic field. The relativistic dispersion of carriers and non-dissipative character of their motion cause the effect of superinjection where carriers go upwards on an energetic ladder. Raman-spectra and other data point out to the fact that the plane of carriers’ motion is close to the carbyne-insulator interface. Quantum effects and on-surface conductivity allow considering oriented carbyne as an analogue of topological insulator.展开更多
We design carbyne transistor which is integrable into the existing silicon technology and can be scaled up in a rather broad range -- starting from that prepared by us (by 0.5-mkm technology) up to the monomolecular o...We design carbyne transistor which is integrable into the existing silicon technology and can be scaled up in a rather broad range -- starting from that prepared by us (by 0.5-mkm technology) up to the monomolecular one because the key mechanism here is the inter-chain charge transfer.展开更多
文摘An attempt to simplify the approach to the problems of room-temperature superconductors was done. The key factor has been highlighted—a giant spin-orbit interaction as a result of specific geometry of crystal. Considering oriented carbyne as an example, it was shown that maximal value of SOC was attained in low-dimensional systems. A qualitative model of superconductivity in the localized phase with “pseudo-magnetic field” and “Rashba effective field” as parameters was presented. Their correlation was shown via geometry of electric microfields of crystal. Oriented carbyne was presented as localized phase of room-temperature superconductor and the recipe of its transformation to macroscopic superconductivity was given.
文摘The qualitative explanation of the earlier published experimental data was obtained within new energetic model of oriented carbyne. The conductivity spectrum and the superinjection effect feature Landau quantization in a giant pseudomagnetic field. The relativistic dispersion of carriers and non-dissipative character of their motion cause the effect of superinjection where carriers go upwards on an energetic ladder. Raman-spectra and other data point out to the fact that the plane of carriers’ motion is close to the carbyne-insulator interface. Quantum effects and on-surface conductivity allow considering oriented carbyne as an analogue of topological insulator.
文摘We design carbyne transistor which is integrable into the existing silicon technology and can be scaled up in a rather broad range -- starting from that prepared by us (by 0.5-mkm technology) up to the monomolecular one because the key mechanism here is the inter-chain charge transfer.